

Methods for Generating Turbulent Inflow Boundary Conditions for LES and DES

Andreas Groß, Hannes Kröger

Introduction

Structure Based Methods

Some Results Channel Flow Computational Efficiency

Summary and Outlook

- For a detailed analysis of unsteady flows, a partial (⇒DES¹, LES²) or full (⇒DNS³) resolution
 of the turbulent motions is necessary
- DES and LES find already widespread application in industrial practice
- There is often already a turbulent flow at the inflow boundaries. A spatially and temporally resolved turbulent velocity field has to be prescribed there: ⁴

 $\vec{U}(\vec{x},t) = \langle \vec{U} \rangle(\vec{x}) + \vec{u}(\vec{x},t)$

 \Rightarrow The velocity fluctuations have to be generated somehow

 $\label{eq:alpha} \begin{array}{l} ^{1} \mbox{Detached-Eddy Simulation} \\ ^{2} \mbox{Large-Eddy Simulation} \\ ^{3} \mbox{Direct Numerical Simulation} \\ ^{4} \mbox{temporal average } \langle \phi \rangle = \int_{-\infty}^{\infty} \phi dt \end{array}$

- DES: Turbulence insertion triggers RANS-to-LES transition
- Synthesis of realistic turbulent structures is required

 $\vec{U}(\vec{x},t) = \langle \vec{U} \rangle(\vec{x}) + \vec{u}(\vec{x},t)$

In order to act as turbulence, the generated velocity fluctuations need to fulfill a number of properties:

- 1. Reynolds Stresses, Amplitude: $\langle u_i u_j \rangle(\vec{x})$
- 2. Spatial Correlation, i.e. spectrum: $R_{ij}(\vec{x}, \vec{\eta}) = \frac{\langle u_i(\vec{x}, t)u_j(\vec{x} + \vec{\eta}, t) \rangle}{\langle u_i(\vec{x}, t)u_i(\vec{x}, t) \rangle}$
- 3. out of it, the length scales follow: $L_{ij}(\vec{x}, \vec{e}_{\eta}) = \int_{0}^{\infty} R_{ij}(\vec{x}, \eta \vec{e}_{\eta}) d\eta$
- 4. Continuity constraint $\nabla \cdot \vec{u} = 0$

⇒violation may lead to numerical problems and/or parasitic pressure fluctuations

Possible approaches for artificial generation of turbulent fluctuations:

1. Random Velocity Fluctuations

in every discrete point with specified amplitude.

- Fluctuations are spatially and temporally uncorrelated ⇒L_{ii} = 0
- Divergence-free constraint is violated, strong damping of fluctuations downstream ⇒Unfeasible

2. Precursor-Simulation

Generation of turbulent fluctuations by auxiliary simulation with periodic boundary conditions.

- Computationally expensive
- Restricted to simple, generic flows

3. Recycling-Method

Extension of domain upstream and extraction of turbulent velocities from the interior domain.

- Increase of computational expense
- Only applicable to fully developed, stationary flows (tube or channel flow)

4. Synthetic Turbulence Generation

Multiple methods have been proposed:

- Sinusoidal Modes by Kraichnan
 - · Superposition of global basis functions
 - Disadvantage: inhomogeneous statistics difficult
- Digital filtering method by Klein
 - Disadvantage: constant time step and grid required
 - reproduction of autocorrelation function difficult
- Superposition of "turbulent" structures ⇒structure based methods

The Turbulent Spot Method

- a.k.a Synthetic-Eddy-Method (SEM)
- superposition of a number of local, compact velocity fields (the "Turbulent Spots") on a mean velocity field.

Thereby:

- The structures are randomly distributed
- They are convected by the mean velocity through the inflow boundary
- The inner velocity distribution is scaled by a random parameter
- The size of the structures controls the length scale

Figure: Snapshot of a population of turbulent structures around the inlet

- The Structure Based Method is developed at LEMOS since 2003
- parallel developments at Manchester University (SEM)
- Realized features so far:
 - Prescribed inhomogeneous and anisotropic Reynolds Stresses
 - Prescribed energy spectrum and length scale (inhomogenenous, but isotropic L_x = L_y = L_z)
 - Not strictly divergence-free ⁵
- Developments in the current project:
 - Prescribed length scale (anisotropic)
 - Strictly divergence-free
 - Extensive validation

⁵because of Cholesky transformation

• The inner velocity distribution \vec{u} determines the autocorrelation function (= energy spectrum):

$$R_{ij}(\vec{x},\vec{\eta}) = \frac{\iint\limits_{(V)} u_i(\vec{x})u_j(\vec{x}+\vec{\eta})dxdydz}{\iint\limits_{(V)} u_i(\vec{x},t)u_j(\vec{x},t)dxdydz}$$

• The decay distance of the autocorrelation function determines the length scales

$$L_i(\vec{x}) = \int_0^\infty R_{ij}(\vec{x}, \eta \vec{e_i}) d\eta$$

 \Rightarrow Velocity distribution inside the spots determines energy spectrum and thus length scales

If the algorithm produces fluctuations with unit amplitude:

1.
$$\langle u_{ij}^2 \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

2. $\langle u_i \rangle = 0$

the Reynolds Stresses can be conditioned by a Cholesky transform::

$$\vec{U} = \langle \vec{U}
angle + \mathbf{A} \vec{u}$$

with the matrix

$$\mathbf{A} = \begin{pmatrix} \sqrt{R_{11}} & 0 & 0 \\ R_{21}/A_{11} & \sqrt{R_{22} - A_{21}^2} & 0 \\ R_{31}/A_{11} & (R_{32} - A_{21}A_{31})/A_{22} & \sqrt{R_{33} - A_{31}^2 - A_{32}^2} \end{pmatrix}$$

 \Rightarrow But: Cholesky transform deteriorates second-order statistics and continuity properties of generated turbulence

Implementation

- The Structure Based Method was implemented in OpenFOAM ("InflowGenerator BC")
- Tasks in this context:
 - scaling the fluctuation amplitudes to fulfill Reynolds Stresses
 - placement of the spots

Thereby:

- Produce structures online, no preprocessing steps
- Avoid numerical calibration of statistics
- Prescribe as a spatial field (inhomogeneous!):
 - length scale
 - the Reynolds Stresses

Types of Turbulent Structures

1.Spots

Direct ansatz functions for velocity

Types of Turbulent Structures

2. Vortons

Velocity distribution derived from vector potential \vec{A} : $\nabla \cdot \vec{u} = \nabla \cdot (\nabla \times \vec{A}) = 0$

Isotropic Vorton

symmetric velocity distribution

$$u_z = u_r =$$

$$u_{\theta} = \pi \sqrt{\frac{2C_E}{C_1}} k_0^5 \exp(-k_0^2 r^2/2)$$

- RS scaling by Cholesky transform
- Fulfills continuity constraint only if RS are isotropic
- Energy spectrum of decaying turbulence

New: Anisotropic Vorton

- Most recent development
- unsymmetric velocity distribution from transformed vector potential

- No Cholesky transform required
- Fulfills continuity constraint always
- Unphysical energy spectrum

• The internal velocity field follows from the vector potential \vec{A} :

$$\vec{u} = \nabla \times \vec{A}$$

For isotropic turbulence, a symmetric vector potential $\vec{A} = A(r)\vec{e_z}$ was derived earlier (Kornev 2007⁶).

• To account for anisotropy, scaling parameters are introduced into the vector potential:

$$\vec{A} = \exp\left[-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} + \frac{z^2}{\sigma_z^2}\right)\right] \begin{pmatrix} x\gamma_x \\ y\gamma_y \\ z\gamma_z \end{pmatrix}$$

• with the free parameters γ_x , γ_y , γ_z , σ_x , σ_y and σ_z .

⁶kornev_divergence_free_vortons.

Anisotropic Vorton

• Closed expressions for the Reynolds stresses can be derived:

$$\mathbf{R} = \frac{\pi^{3/2}}{4} \begin{pmatrix} \frac{\sigma_x(\gamma_y \sigma_y^2 - \gamma_z \sigma_z^2)^2}{\sigma_y \sigma_z} & 0 & 0\\ 0 & \frac{\sigma_y(\gamma_x \sigma_x^2 - \gamma_z \sigma_z^2)^2}{\sigma_x \sigma_z} & 0\\ 0 & 0 & \frac{\sigma_z(\gamma_x \sigma_x^2 - \gamma_y \sigma_y^2)^2}{\sigma_x \sigma_y} \end{pmatrix}$$

also for the length scales

$$L_i = \int_0^\infty r_{ii}(\eta \vec{e_i}) \mathrm{d}\eta = \sqrt{\pi}\sigma_i$$

for i = x, y, z.

 \Rightarrow From prescribed Reynolds stresses and length scales, the free parameters can be deduced.

• But: not all combinations of length scales can be reproduced. A solution requires:

$$\pm \sqrt{R_2 \frac{L_1 L_3}{L_2}} \pm \sqrt{R_3 \frac{L_1 L_2}{L_3}} = \pm \sqrt{R_1 \frac{L_2 L_3}{L_1}}$$

or

$$L_{3} = \frac{\pm L_{1}L_{2}\sqrt{R_{3}}}{\pm L_{2}\sqrt{R_{1}} \pm L_{1}\sqrt{R_{2}}}$$

 \Rightarrow Prescription of two length scales determines the third.

Especially in the case of isotropic turbulence R₁ = R₂ = R₃ = R with L₁ = L₂ = L the condition L₃ = L/2 needs to be fulfilled.

Realizable Anisotropy States

• shaded area is reproducable by ansiotropic vortons

 \Rightarrow entire area

Reproduction of Reynolds stresses in LES of channel flow at $Re_{\tau} = 395$.

- Dashed: prescribed input profiles
- Solid: reproduced profiles

Traditio et Innovatio

Universität Rostock

Channel Flow - Adaption Length

Red: isotropic length scales

Blue: anisotropic length scales

 \Rightarrow

Velocity distribution shape has big influence on adaption length, influence of of length scales anisotropy is remarkable as well

Reynolds Stresses

 \Rightarrow Improved continuity compliance of anisotropic vortons leads to largely reduced parasitic pressure fluctuations

Universität Rostock

Traditio et Innovatio

Computational Efficiency

 1000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

jet mixer test case:

- a). using recyling method (1100k cells)
- b). using inflow generator (670k cells, \approx -40%) (Identical resolution of the domain downstream of nozzle in both cases.)

Comparison

- recycling case \approx 49700 sec. wallclock time / sec. simulation time
- rnflow generator: \approx 26000 sec. wallclock time / sec. simulation time
- $\Rightarrow\approx$ +91% wallclock time by recycling method
- \Rightarrow inflow generator sufficiently fast

- The Structure Based Method is a relatively simple and elegant method for synthesis of turbulent fields.
- Implementations so far were restricted to isotropic length scales and divergent velocity fields.
- The most important challenge is the combination of anisotropy with the divergence-free constraint.
- Formulation of anisotropic divergence-free vortons has been derived and implemented.

- An extensive validation and comparison with other methods for turbulence generation is currently conducted.
- Extension for compressible flows and scalar fluctuations are planned.

Thank you for your attention!

Acknowledgements

- The work is supported by the Deutsche Forschungsgemeinschaft (DFG, grant KO 3394/7-1 and grant INST 264/113-1 FUGG)
- computational resources were granted by the North-German Supercomputing Alliance (HLRN)

Andreas Groß +49 381 498 9553 andreas.gross@uni-rostock.de http://www.lemos.uni-rostock.de/

Dr.-Ing. Hannes Kröger +49 381 498 9528 hannes.kroeger@uni-rostock.de http://www.lemos.uni-rostock.de/ http://www.silentdynamics.de/