4th Northern germany OpenFoam User meetiNg 2016

3D Simulation of an Argon magnetoplasmadynamic thruster with coaxial induced magnetic field

Charles M. Chelem

German Academic Exchange Service

Braunschweig, 29 September 2016

Introduction	Phys. model	The density-based method	Validation	Application to MPDT	Conclusion	App en dix

- 2 Physical model and Governing equations
- Proposed density-based numerical method for MHD flow
- 4 Verification of the proposed schemes
- 5 Application to resistive MHD: MPD thruster
- 6 Conclusion and Outlook

🕖 Appendix

What is Magnetoplasmadynamic thruster?

Definition

A Magnetoplasmadynamic thruster (MPDT) is a form of electrically powered spacecraft propulsion which uses the Lorentz force to generate thrust.

Schematic view of a self-field MPDT

MPDT in operation²

¹National Aeronautics and Space Administration

²NASA Facts, Glenn Research Center

Introduction	Phys. model	The density-based method	Validation	Application to MPDT	Conclusion	App en dix
000						

Motivation

Physical problems

- Real gas effects
- Thermal nonequilibrium
- Problem of friction
- Difficulty to seperate flow and discharge

Numerical difficulties

- The necessary coupling of partial differential equations systems (Elliptical and hyperbolic)
- Nonlinearities

- Calculate a plasma flow in the self-field MPDT by using a Central-Upwind scheme
- Obtain insight into the physics of thrust production and Energy dissipation

Introduction	Phys. model	The density-based method	Validation	Application to MPDT	Conclusion	App en dix

- 2 Physical model and Governing equations
- Proposed density-based numerical method for MHD flow
- 4 Verification of the proposed schemes
- 5 Application to resistive MHD: MPD thruster
- 6 Conclusion and Outlook

🕖 Appendix

Introduction 000	Phys. model ●00	The density-based method	Validation	Application to MPDT	Conclusion 0	Appendi x 00000
Physics	al mode					

The model ...

we present is dedicated to the description of an electrically conducting but electrically neutral fluid.

We assumed that:

- The propellant gas (Argon) is injected into the discharge chamber as fully-ionized fluid
- The plasma flow is in a state of thermal equilibrium $T \approx T_e \approx T_i$
- Electrical sheat, Hall effect and radiation processes are neglected.

Governing equations

For compressible MHD flow:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{U} = \mathbf{0}$$
$$\frac{\partial \rho \mathbf{U}}{\partial t} + \nabla \cdot \left[\rho \mathbf{U} \mathbf{U} + \left(p + \frac{B^2}{2\mu_0} \right) \mathbf{I} - \frac{\mathbf{B}\mathbf{B}}{\mu_0} = \nabla \cdot \tau_{visc}$$

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{U}\mathbf{B} - \mathbf{B}\mathbf{U}) = -\frac{1}{\mu_0 \sigma} \Delta \mathbf{B}$$
$$\frac{\partial \rho E}{\partial t} + \nabla \cdot \left[\left(\rho E + \rho + \frac{B^2}{2\mu_0} \right) \mathbf{U} - \frac{\mathbf{B}\mathbf{B}}{\mu_0} \right] = \nabla \cdot \left[k_{th} \nabla T - \left(\frac{\eta \mathbf{J} \times \mathbf{B}}{\mu_0} \right) \right]$$

 ρ , **U** and **B**: are the average density of all species, the velocity and magnetic field vectors $\rho E = \frac{p}{\gamma - 1} + \frac{1}{2}\rho U^2 + \frac{B^2}{2m}$ is the total energy density of the plasma _

Permeability of the free space μ_0 , Curent density J, Electrical conductivity σ , Thermal conductivity coefficient k_{th}

Introduction	Phys. model	The density-based method	Validation	Application to MPDT	Conclusion	App en dix
	000					

Governing equations

 $\sigma = 1.53 \times 10$

Electrical conductivity ...

is deducted from the Spitzer-Harm formulation ^a:

^aSpitzer, L. and Härm, R.: Transport phenomena in a completely ionized gas. Phys. Rev., 89, 977 (1953)

$$-2\frac{T^{\frac{3}{2}}}{\ln\Lambda} \qquad \ln\Lambda = \ln[\frac{12\sqrt{2}\pi(k_{B}\epsilon_{0}T)^{\frac{3}{2}}}{a^{3}n^{\frac{1}{2}}}]$$

The divergence Cleaning method ...

is coupled with the induction equation to ensure that $div(B) = 0^{-a}$

^aDedner, A., Kemm, F., Munz, C.D., Schnitzer, T., and Wesenberg, M.:*Hyperbolic Divergence Cleaning for the MHD Equations.* J. Comput. Phys., 175, 645-673 (2002)

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{U}\mathbf{B} - \mathbf{B}\mathbf{U}) + \nabla \psi = -\frac{1}{\mu_0 \sigma} \Delta \mathbf{B} \qquad c_h = \frac{CFL}{\Delta t \times max(\frac{1}{h})}$$
$$\frac{\partial \psi}{\partial t} + c_h^2 \nabla \cdot \mathbf{B} = -\frac{c_h^2}{c_d^2} \psi \qquad c_d = \sqrt{-\Delta t \frac{c_h^2}{I_h(C_r)}}$$

Introduction	Phys. model	The density-based method	Validation	Application to MPDT	Conclusion	App en dix

- 2 Physical model and Governing equations
- Proposed density-based numerical method for MHD flow
- 4 Verification of the proposed schemes
- 5 Application to resistive MHD: MPD thruster
- 6 Conclusion and Outlook

7 Appendix

Introduction Phys. model The density-based method Validation Application to MPDT Conclusion Appendix occorrectional Method

Summerized convective and diffusive fluxes $^{\rm 4}$ with divergence cleaning terms:

$$\sum_{f} \phi_{f} W_{f} = \sum_{f} [\alpha \phi_{f+} (W_{f+} + \kappa_{f+}) + (1 - \alpha) \phi_{f-} (W_{f-} + \kappa_{f-}) + \omega_{f} (W_{f-} - W_{f+}) + \frac{1}{2} (\Phi_{f-} + \Phi_{f+})]$$

$$W_{f} = \begin{pmatrix} \rho \\ \rho U_{x} \\ \rho U_{y} \\ \rho U_{y} \\ \rho U_{z} \\ B_{x} \\ B_{y} \\ B_{z} \\ \rho E + P_{over} \end{pmatrix}, \kappa_{f} = \begin{pmatrix} 0 \\ S_{x} P_{over} \\ S_{y} P_{over} \\ -b_{f} U_{x} \\ -b_{f} U_{z} \\ -b_{f} U_{z} \\ -b_{f} U_{z} \\ -b_{f} (U \cdot B) \end{pmatrix}, \omega_{f} = \begin{pmatrix} 0 \\ \omega_{f} \\ \omega_{f} \\ 0 \\ 0 \\ \omega_{f} \\ 0 \end{pmatrix}, \Phi_{f} = \begin{pmatrix} 0 \\ -B_{y} b_{f} \\ -B_{z} b_{f} \\ S_{y} \psi \\ S_{z} \psi \\ 0 \\ 0 \\ c_{h}^{2} b_{f} \end{pmatrix}$$

Central-upwind interpolation schema

⁴Kurganov, A., Noelle, S., Petrova, G.: Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput., 23, 707-740 (2001).

Convective Terms
$$\alpha = \begin{cases} \frac{1}{2} & \text{for the KI method} \\ \frac{\Psi_{f+}}{\Psi_{f+} + \Psi_{f-}} & \text{for the KNP method} \end{cases}$$
Diffusive Terms
$$\omega_f = \begin{cases} \alpha \max(\Psi_{f+}, \Psi_{f-}) & \text{for the KT method} \\ \alpha(1-\alpha)(\Psi_{f+} + \Psi_{f-}) & \text{for the KNP method} \end{cases}$$

$$\Psi_{f+} = \max(c_f | S_f | + \phi_{f+}, c_f | S_f | + \phi_{f-}, 0)$$

(1

Central Method fluxes ⁵

$$\Psi_{f-} = min(c_f|S_f| - \phi_{f+}, c_f|S_f| - \phi_{f-}, 0)$$

 $c_f = min(c_+, c_-)$

d

Effective speed of sound $c_{\pm} = (\frac{1}{2} [a_{\pm}^2 + \frac{B_{\pm}^2}{\mu_0 \rho_{\pm}} + \sqrt{(a_{\pm}^2 + \frac{B_{\pm}^2}{\mu_0 \rho_{\pm}})^2 - 4a_{\pm}^2 \frac{B_{n,\pm}^2}{\mu_0 \rho_{\pm}}}])^{\frac{1}{2}}$

⁵Greenshields, C.J., Weller, H.G., Gasparini, L., and Reese, J.M.: *Implementation of semi-discrete,* non-staggered central schemes in a collocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Meth. Fluids, 63, 1-21 (2010).

Introduction	Phys. model	The density-based method	Validation	Application to MPDT	Conclusion	App en dix

- 2 Physical model and Governing equations
- Proposed density-based numerical method for MHD flow
- 4 Verification of the proposed schemes
- 5 Application to resistive MHD: MPD thruster
- 6 Conclusion and Outlook

🕖 Appendix

The Shock-cloud interaction problem

$$(\rho, u_{\mathbf{x}}, u_{\mathbf{y}}, u_{\mathbf{z}}, p, B_{\mathbf{x}}, B_{\mathbf{y}}, B_{\mathbf{z}}) = \begin{cases} (3.86, 0, 0, 0, 167.34, 0, 2.18, -2.18) & \text{if } x < 0.6 \\ (1, -11.25, 0, 0, 1, 0, 0.56, -0.56) & \text{if } x \ge 0.6 \end{cases}$$

Initial conditions for density and the geometry used for the cloud-shock interaction test case ⁶ and density distribution on the $N = 800 \times 800$ grid at t = 0.06 s. Density in (kg/m^3)

⁶Xisto, C.M., Pascoa, J.C., Oliviera, P.J.: *A pressure-based high resolution numerical method for resistive MHD.* J. Comput. phys., 275, 323-345 (2014).

Introduction	Phys. model	The density-based method	Validation	Application to MPDT	Conclusion	App en dix
			00			

Density

Introduction	Phys. model	The density-based method	Validation	Application to MPDT	Conclusion	App en dix

- 2 Physical model and Governing equations
- Proposed density-based numerical method for MHD flow
- 4 Verification of the proposed schemes
- 5 Application to resistive MHD: MPD thruster
- 6 Conclusion and Outlook

🕖 Appendix

Villani-H thruster: Case set-up

Input of the code:

Discharge Current I (A)

Temperature T(K)The propellant mass flow rate $\dot{m}(kg/s)$

⁷K. Sankaran, 2005

Mesh grid of the Villani-H thruster with about 1.25 millions cells

 $B_0 = \frac{\mu_0 I}{2\pi r}$ GroovyBC

$$p =
ho RT$$

Introduction	Phys. model	The density-based method	Validation	Application to MPDT	Conclusion	Appendix
000	000	00	00	0●000000	0	00000

Boundary conditions

Variables	Inlet	Electrodes	Insulated walls	O ut let
U (m/s)	$\dot{\mathbf{m}} = 6.0(g/s)$	slip/non slip	non-slip	ZG
T (eV)	fixedValue 1.0	ZG	ZG	ZG
p (Pa)	ZG	ZG	ZG	WT
B (T)	TDBC	Conducting walls	fixedValue (0,0,0)	fixedValue $(0, 0, 0)$

Boundary conditions of the MPDT simulations

- ZG: Zero gradient
- WT: Wave transmissive
- TDBC: Time depending boundary condition

$$B = \begin{cases} 0, & \text{if } t < t_1. \\ B_0 \frac{t - t_1}{t_2 - t_1}, & \text{if } t_1 < t < t_2. \\ B_0, & \text{if } t > t_2 \end{cases}$$

Introduction	Phys. model	The density-based method	Validation	Application to MPDT	Conclusion	Appendix
				0000000		

Results

(c) Initial conditions for density and the geometry used for the cloud-shock interaction test case

(d) Density distribution

Velocity, Mach number distribution (left), Temperature and pressure (right) with $\frac{l^2}{m} = 05 \times 10^9 \cdot \frac{A^2 s}{kg}$, $l_c = 0.264$ m, $r_c = 0.0095$ m, $r_a = 0.051$ m and $\frac{l_a}{r_a} = 04$ for MPDT02. Units: Velocity (m/s), Temperature (K), Pressure (pa) and Density (kg/m^3)

Introduction Phys. model The density-based method Validation Application to MPDT Conclusion Appendix

Geometric scaling analysis

MPDT geometries and $\frac{l^2}{m}$ values for the numerical parameter study on the HLRN. r_a , l_a and l_c denote anode radius, anode length and cathode length respectively.

Case geometry	$\frac{l_a}{r_a}$	$\frac{I^2}{\dot{m}} \left[10^9 \cdot \frac{A^2 s}{kg} \right]$	l _c [m]
MPDT01	1	5.7	0.132
$r_c = 0.0095[m]$	2	11.2	0.264
$r_a = 0.025[m]$	3	18.4	
	4	25.6	
	5	48.4	
		60.2	
MPDT02	1	5.7	0.132
$r_c = 0.0095[m]$	2	11.2	0.264
$r_a = 0.051[m]$	3	18.4	
	4	25.6	
	5	48.4	
		60.2	
MPDT03	1	5.7	0.132
$r_c = 0.0181[m]$	2	11.2	0.264
$r_a = 0.051[m]$	3	18.4	
	4	25.6	
	5	48.4	
		60.2	

(e) Thrust

(f) Specific impulse and current voltage

Thrust, efficiency, plasma current voltage for MPDT01 with $\frac{l_a}{r_a} = 04$.

$\frac{l^2}{\dot{m}} \left[10^9 \cdot \frac{A^2 s}{kg} \right]$	$F_{EM}[N]$	Maecker[N]	F _{thermal} [N]	F _{total} [N]	$V_{plasma}[V]$	lsp[s]
60.2	32.86	36.06	24.54	57.4	39.238	975.13

Thrust function of aspect ratio for MPDT01 for $\frac{l^2}{\dot{m}} = 05.7 \times 10^9 \cdot \frac{A^2 s}{kg}$ and $\frac{l^2}{\dot{m}} = 11.2 \times 10^9 \cdot \frac{A^2 s}{kg}$.

(g) Thrust

(h) Specific impulse and current voltage

Thrust, efficiency, plasma current voltage for MPDT03 with $\frac{l_a}{r_a} = 04$.

$\frac{l^2}{\dot{m}} \left[10^9 \cdot \frac{A^2 s}{kg} \right]$	$F_{EM}[N]$	Maecker[N]	F _{thermal} [N]	F _{total} [N]	$V_{plasma}[V]$	lsp[s]
60.2	34.04	36.24	28.20	56.24	26.425	955

Thrust efficiency (%) for both MPDT01, MPDT02 and MPDT03 with $\frac{l_{a}}{r_{a}}=$ 04.

Case geometry	η_{effmax} [%]	η_{effmin} [%]
MPDT01	36.25	20.27
MPDT02	27.14	16.41
MPDT03	53.35	21.9

Introduction	Phys. model	The density-based method	Validation	Application to MPDT	Conclusion	App en dix

- 2 Physical model and Governing equations
- Proposed density-based numerical method for MHD flow
- 4 Verification of the proposed schemes
- 5 Application to resistive MHD: MPD thruster
- 6 Conclusion and Outlook

🕖 Appendix

Introduction 000	Phys. model 000	The density-based method	Validation 00	Application to MPDT	Conclusion ●	Appendi x 00000
Conclu	sion					

- The central-upwind schemes have been succefully extended to MHD equations.
- The solver has demonstrated capability to compute resistive plasma flows in simple geometries

What remain to be done?

• improve the physical model (by adding Hall effect, real gas effect, considering multiple fluid plasma flow, ...) in order to achieve a predominantly electromagnetic acceleration mode for all thruster configuration in more realistic scenario. Thank You for your Attention!

Introduction	Phys. model	The density-based method	Validation	Application to MPDT	Conclusion	App en dix

- 2 Physical model and Governing equations
- Proposed density-based numerical method for MHD flow
- 4 Verification of the proposed schemes
- 5 Application to resistive MHD: MPD thruster
- 6 Conclusion and Outlook

7 Appendix

 $j \times B$: Lorentz force of a volume element

$$\mathbf{j} \times \mathbf{B} = \frac{1}{\mu} (\nabla \times \mathbf{B}) \times \mathbf{B} = \underbrace{\frac{1}{\mu} (\mathbf{B} \cdot \nabla) \mathbf{B}}_{mag. Diffusion} - \underbrace{\nabla \left(\frac{B^2}{2\mu}\right)}_{mag. Pressure}$$

Maecker (1955) introduces an analytical expression of the electromagnetic thrust for coaxial self-field MPD thrusters, based on continuum plasma and ideal MPD approximation.

$$F_{Maecker} = rac{\mu_0}{4\pi} I^2 (ln rac{r_a}{r_c} + A)$$

where A is a dimensionless constant between 0 and 1. In this study, we considered A = 0.

The MHD shock tube problem: Magnetic shock wave

Initial conditions of the problem ⁸

- Density jump
- Pressure jump
- Cross-sheared magnetic unsteadiness

⁸Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. phys., 27, 1-31 (1978)

Comparaison of exact y-component of magnetic field (a)and density (b) profiles with numerical simulation results at $t = 0.1 \ s$

Comparaison of exact y-component of velocity (a) and pressure (b) profiles with numerical simulation results at t=0.1~s

(m) Thrust

(n) Specific impulse and current voltage

Thrust, efficiency, plasma current voltage for MPDT02 with $\frac{l_a}{r_a} = 04$.

$\frac{l^2}{\dot{m}} \left[10^9 \cdot \frac{A^2 s}{kg} \right]$	$F_{EM}[N]$	Maecker[N]	F _{thermal} [N]	F _{total} [N]	$V_{plasma}[V]$	lsp[s]
25.2	24.43	27.2	3.57	28	31.34	475