From Finite Volumes to Discontinuous Galerkin and Flux Reconstruction

Sigrun Ortleb

Department of Mathematics and Natural Sciences, University of Kassel

GOFUN 2017 OpenFOAM user meeting March 21, 2017

Numerical simulation of fluid flow

This includes flows of liquids and gases such as flow of air or flow of water

Spreading of Tsunami waves

Weather prediction

Flow through sea gates

Flow around airplanes

Requirements on numerical solvers

- High accuracy of computation
- Detailed resolution of physical phenomena
- Stability and efficiency, robustness
- Compliance with physical laws (e.g. conservation)

Contents

(1) The Finite Volume Method
(2) The Discontinuous Galerkin Scheme
(3) SBP Operators \& Flux Reconstruction

4 Current High Performance DG / FR Schemes

Based on

- physical principles: conservation of quantities \& balance of forces
- mathematical tools: Reynolds transport \& Gauß divergence theorem Different formulations:
Integral conservation law

$$
\frac{d}{d t} \int_{V} \mathbf{u} d \mathbf{x}+\int_{\partial V} \mathbf{F}(\mathbf{u}, \nabla \mathbf{u}) \cdot \mathbf{n} d \sigma=\int_{V} \mathbf{s}(\mathbf{u}, \mathbf{x}, t) d \mathbf{x}
$$

Partial differential equation

$$
\frac{\partial \mathbf{u}}{\partial t}+\nabla \cdot \mathbf{F}=\mathbf{s}
$$

embodies the physical principles

Based on Reynolds transport theorem

$$
\begin{aligned}
& \qquad \frac{d}{d t} \int_{V_{t}} u(\mathbf{x}, t) d \mathbf{x}=\int_{V_{t}} \frac{\partial u(\mathbf{x}, t)}{\partial t} d \mathbf{x}+\int_{\partial V_{t}} u(\mathbf{x}, t) \mathbf{v} \cdot \mathbf{n} d \sigma \\
& \begin{array}{l}
\text { rate of change } \\
\text { in moving volume }
\end{array}=\begin{array}{l}
\text { rate of change } \\
\text { in fixed volume }
\end{array} \quad+\quad \begin{array}{l}
\text { convective transfer } \\
\text { through surface }
\end{array} \\
& \left(V_{t} \text { control volume of fluid particles }\right)
\end{aligned}
$$

Based on Reynolds transport theorem

$$
\frac{d}{d t} \int_{V_{t}} u(\mathbf{x}, t) d \mathbf{x}=\int_{V_{t}} \frac{\partial u(\mathbf{x}, t)}{\partial t} d \mathbf{x}+\int_{\partial V_{t}} u(\mathbf{x}, t) \mathbf{v} \cdot \mathbf{n} d \sigma
$$

$\begin{aligned} & \text { rate of change } \\ & \text { in moving volume }\end{aligned}=\begin{aligned} & \text { rate of change } \\ & \text { in fixed volume }\end{aligned}+\quad+\begin{aligned} & \text { convective transfer } \\ & \text { through surface }\end{aligned}$
(V_{t} control volume of fluid particles)
Physical principle: conservation of mass

$$
\frac{d m}{d t}=\frac{d}{d t} \int_{V_{t}} \rho d \mathbf{x}=\int_{V_{t}} \frac{\partial \rho}{\partial t} d \mathbf{x}+\int_{\partial V_{t}} \rho \mathbf{v} \cdot \mathbf{n} d \sigma=0
$$

Derivation of the continuity equation

Based on Reynolds transport theorem

$$
\frac{d}{d t} \int_{V_{t}} u(\mathbf{x}, t) d \mathbf{x}=\int_{V_{t}} \frac{\partial u(\mathbf{x}, t)}{\partial t} d \mathbf{x}+\int_{\partial V_{t}} u(\mathbf{x}, t) \mathbf{v} \cdot \mathbf{n} d \sigma
$$

$\begin{aligned} & \text { rate of change } \\ & \text { in moving volume }\end{aligned}=\begin{aligned} & \text { rate of change } \\ & \text { in fixed volume }\end{aligned}+\quad+\begin{aligned} & \text { convective transfer } \\ & \text { through surface }\end{aligned}$
(V_{t} control volume of fluid particles)
Physical principle: conservation of mass

$$
\frac{d m}{d t}=\frac{d}{d t} \int_{V_{t}} \rho d \mathbf{x}=\int_{V_{t}} \frac{\partial \rho}{\partial t} d \mathbf{x}+\int_{\partial V_{t}} \rho \mathbf{v} \cdot \mathbf{n} d \sigma=0
$$

Divergence theorem yields

$$
\int_{V \equiv V_{t}}\left[\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})\right] d \mathbf{x}=0 \quad \Rightarrow \quad \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0
$$

... are based on conservation of mass, momentum and energy

$$
\frac{\partial \mathbf{u}}{\partial t}+\nabla \cdot \mathbf{F}=\mathbf{s} \quad\left[\frac{\partial \mathbf{u}}{\partial t}+\nabla \cdot \mathbf{F}^{i n v}+\nabla \cdot(A(\mathbf{u}) \nabla \mathbf{u})=\mathbf{s}\right]
$$

inviscid \& viscous fluxes

Conservative variables $u \in \mathbb{R}^{5}$, fluxes $\mathbf{F} \in \mathbb{R}^{3 \times 5}$ and sources $\mathbf{s} \in \mathbb{R}^{5}$

$$
\mathbf{u}=\left(\begin{array}{c}
\rho \\
\rho \mathbf{v} \\
\rho E
\end{array}\right), \mathbf{F}=\left(\begin{array}{c}
\rho \mathbf{v} \\
\rho \mathbf{v} \otimes \mathbf{v}+p l-\tau \\
(\rho E+p) \mathbf{v}-\kappa \nabla T-\tau \cdot \mathbf{v}
\end{array}\right), \mathbf{s}=\left(\begin{array}{c}
0 \\
\rho \mathbf{g} \\
\rho(q+\mathbf{g} \cdot \mathbf{v})
\end{array}\right)
$$

convective fluxes,
heat fluxes \& surface forces
p pressure, T temperature
τ viscous stress tensor
κ thermal conductivity
body forces
\& heat sources
g gravitational \& electromag. forces
q intern. heat sources
\rightarrow simplified programming by representation in same generic form
\rightarrow sufficient to develop discretization schemes for generic conservation law

General discretization techniques

Finite differences / differential form

- approximation of nodal values and nodal derivatives
- easy to derive, efficient

- essentially limited to structured meshes

Finite volumes / integral form

- approximation of cell means and integrals
- conservative by construction
- suitable for arbitrary meshes
- difficult to extend to higher order

Finite elements / weak form

- weighted residual formulation
- quite flexible and general
- suitable for arbitrary meshes

... based on the integral rather than the differential form
Integral conservation enforced for small control volumes V_{i} defined by computational mesh

$$
\bar{V}=\bigcup_{i=1}^{K} \bar{V}_{i}
$$

Degrees of freedom: cell means

$$
u_{i}(t)=\frac{1}{\left|V_{i}\right|} \int_{V_{i}} u(\mathbf{x}, t) d \mathbf{x}
$$

cell-centered vs. vertex-centered
possibly staggered for different variables

To be specified:

- concrete definition of control volumes
- type of approximation inside these
- numerical method for evaluation of integrals and fluxes

Why the integral form?

Because this is the form directly obtained from physics.

1D scalar hyperbolic conservation law

$$
\frac{\partial u}{\partial t}+\frac{\partial f(u)}{\partial x}=0 \quad \text { init. cond.: } \quad u_{0}(x)=\left\{\begin{array}{cl}
1, & x<0 \\
\cos (\pi x), & 0 \leq x \leq 1 \\
-1, & x>1
\end{array}\right.
$$

PDE theory tells us:
As long as the exact solution is smooth, it is constant along charactereristic curves

Why the integral form?

Because this is the form directly obtained from physics.

1D scalar hyperbolic conservation law

$$
\frac{\partial u}{\partial t}+\frac{\partial f(u)}{\partial x}=0 \quad \text { init. cond.: } \quad u_{0}(x)=\left\{\begin{array}{cl}
1, & x<0 \\
\cos (\pi x), & 0 \leq x \leq 1 \\
-1, & x>1
\end{array}\right.
$$

PDE theory tells us:
As long as the exact solution is smooth, it is constant along charactereristic curves

Characteristic curves are straight lines and cross \rightarrow smooth solution breaks down integral form (time integrated) still holds

Why the integral form?

Because this is the form directly obtained from physics.

1D scalar hyperbolic conservation law

$$
\frac{\partial u}{\partial t}+\frac{\partial f(u)}{\partial x}=0 \quad \text { init. cond.: } \quad u_{0}(x)=\left\{\begin{array}{cl}
1, & x<0 \\
\cos (\pi x), & 0 \leq x \leq 1 \\
-1, & x>1
\end{array}\right.
$$

PDE theory tells us:
As long as the exact solution is smooth, it is constant along charactereristic curves

Characteristic curves are straight lines
It is important to ensure correct shock speed
and cross \rightarrow smooth solution breaks down integral form (time integrated) still holds

In 1D, the FV scheme can be regarded as a FD scheme in conservative form

$$
u_{i}(t)=\frac{1}{\Delta x_{i}} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} u(x, t) d x
$$

In 1D, the FV scheme can be regarded as a FD scheme in conservative form

$$
u_{i}(t)=\frac{1}{\Delta x_{i}} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} u(x, t) d x
$$

On a control volume $V=\left[x_{i-1 / 2}, x_{i+1 / 2}\right]$, the exact solution fulfills

$$
\frac{d}{d t} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} u d \mathbf{x}+[f(u)]_{x_{i-1 / 2}}^{x_{i+1 / 2}}=0
$$

discretized: $\quad \Delta x_{i} \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}+f\left(u_{i+1 / 2}^{n}\right)-f\left(u_{i-1 / 2}^{n}\right)=0$

In 1D, the FV scheme can be regarded as a FD scheme in conservative form

$$
u_{i}(t)=\frac{1}{\Delta x_{i}} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} u(x, t) d x
$$

On a control volume $V=\left[x_{i-1 / 2}, x_{i+1 / 2}\right]$, the exact solution fulfills

$$
\begin{aligned}
& \frac{d}{d t} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} u d \mathbf{x}+[f(u)]_{x_{i-1 / 2}}^{x_{i+1 / 2}}=0 \\
& \text { discretized: } \quad \Delta x_{i} \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}+f\left(u_{i+1 / 2}^{n}\right)-f\left(u_{i-1 / 2}^{n}\right)=0
\end{aligned}
$$

flux values $f\left(u_{i \pm 1 / 2}\right)$ depending on unknown face quantities $u_{i-1 / 2}, u_{i+1 / 2}$
\rightarrow reconstruction necessary from available data $\ldots, u_{i-1}, u_{i}, u_{i+1}, \ldots$
\rightarrow Introduction of numerical flux functions f^{*}

$$
u_{i}^{n+1}=u_{i}^{n}-\frac{\Delta x_{i}}{\Delta t}\left(f^{*}\left(u_{i}^{n}, u_{i+1}^{n}\right)-f^{*}\left(u_{i-1}^{n}, u_{i}^{n}\right)\right)
$$

In 1D, the FV scheme can be regarded as a FD scheme in conservative form

$$
u_{i}(t)=\frac{1}{\Delta x_{i}} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} u(x, t) d x
$$

On a control volume $V=\left[x_{i-1 / 2}, x_{i+1 / 2}\right]$, the exact solution fulfills

$$
\begin{aligned}
& \frac{d}{d t} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} u d \mathbf{x}+[f(u)]_{x_{i-1 / 2}}^{x_{i+1 / 2}}=0 \\
& \text { discretized: } \quad \Delta x_{i} \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}+f\left(u_{i+1 / 2}^{n}\right)-f\left(u_{i-1 / 2}^{n}\right)=0
\end{aligned}
$$

flux values $f\left(u_{i \pm 1 / 2}\right)$ depending on unknown face quantities $u_{i-1 / 2}, u_{i+1 / 2}$
\rightarrow reconstruction necessary from available data $\ldots, u_{i-1}, u_{i}, u_{i+1}, \ldots$
\rightarrow Introduction of numerical flux functions f^{*} The heart of FV schemes

$$
u_{i}^{n+1}=u_{i}^{n}-\frac{\Delta x_{i}}{\Delta t}\left(f^{*}\left(u_{i}^{n}, u_{i+1}^{n}\right)-f^{*}\left(u_{i-1}^{n}, u_{i}^{n}\right)\right)
$$

Classical numerical flux functions

linked to Riemann problems
\& characteristic directions

Classical numerical flux functions

linked to Riemann problems
\& characteristic directions

Upwind methods
Scalar linear equation $a>0 \quad\left(\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=0\right)$

$$
u_{i}^{n+1}=u_{i}^{n}-\frac{\Delta x}{\Delta t}\left(a u_{i}^{n}-a u_{i-1}^{n}\right) \quad\left(f^{*}\left(u_{i}, u_{i+1}\right)=a u_{i}\right)
$$

Linear system of equations $\quad \rightarrow \mathbf{f}^{*}\left(\mathbf{u}_{i}, \mathbf{u}_{i+1}\right)=\mathbf{A}^{+} \mathbf{u}_{i}+\mathbf{A}^{-} \mathbf{u}_{i+1}$

$$
\mathbf{u}_{i}^{n+1}=\mathbf{u}_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\mathbf{A}^{+}\left(\mathbf{u}_{i}^{n}-\mathbf{u}_{i-1}^{n}\right)+\mathbf{A}^{-}\left(\mathbf{u}_{i+1}^{n}-\mathbf{u}_{i}^{n}\right)\right)
$$

Nonlinear systems \rightarrow Flux vector splitting

$$
\mathbf{f}(\mathbf{u})=\mathbf{f}^{+}(\mathbf{u})+\mathbf{f}^{-}(\mathbf{u}) \Rightarrow \mathbf{f}^{*}\left(\mathbf{u}_{i}, \mathbf{u}_{i+1}\right)=\mathbf{f}^{+}\left(\mathbf{u}_{i}\right)+\mathbf{f}^{-}\left(\mathbf{u}_{i+1}\right)
$$

Steger \& Warming, van Leer, AUSM and variants

Classical approximate Riemann solvers for Euler equations

Roe scheme
exact solution to linear Riemann problem

$$
\frac{\partial \mathbf{u}}{\partial t}+A_{L R}\left(\mathbf{u}_{L}, \mathbf{u}_{R}\right) \frac{\partial \mathbf{u}}{\partial \mathbf{x}}=0
$$

Classical approximate Riemann solvers for Euler equations

Roe scheme
exact solution to linear Riemann problem

$$
\frac{\partial \mathbf{u}}{\partial t}+A_{L R}\left(\mathbf{u}_{L}, \mathbf{u}_{R}\right) \frac{\partial \mathbf{u}}{\partial \mathbf{x}}=0
$$

Properties of Roe matrix $\mathbf{A}_{L R}$

- $\mathbf{A}_{L R} \approx \mathbf{A}(\mathbf{u})=D \mathbf{f}(\mathbf{u})$
- $\mathbf{A}_{L R}(\mathbf{u}, \mathbf{u})=\mathbf{A}(\mathbf{u})$
- $\mathbf{A}_{L R}$ is diagonalizable
- $\mathbf{f}\left(\mathbf{u}_{R}\right)-\mathbf{f}\left(\mathbf{u}_{L}\right)=\mathbf{A}_{L R}\left(\mathbf{u}_{R}-\mathbf{u}_{L}\right)$ (mean value property)
entropy-fix needed

Classical approximate Riemann solvers for Euler equations

Roe scheme
exact solution to linear Riemann problem

$$
\frac{\partial \mathbf{u}}{\partial t}+A_{L R}\left(\mathbf{u}_{L}, \mathbf{u}_{R}\right) \frac{\partial \mathbf{u}}{\partial \mathbf{x}}=0
$$

HLL scheme
Godunov-type scheme

Properties of Roe matrix $\mathbf{A}_{L R}$

- $\mathbf{A}_{L R} \approx \mathbf{A}(\mathbf{u})=D \mathbf{f}(\mathbf{u})$
- $\mathbf{A}_{L R}(\mathbf{u}, \mathbf{u})=\mathbf{A}(\mathbf{u})$
- $\mathbf{A}_{L R}$ is diagonalizable
- $\mathbf{f}\left(\mathbf{u}_{R}\right)-\mathbf{f}\left(\mathbf{u}_{L}\right)=\mathbf{A}_{L R}\left(\mathbf{u}_{R}-\mathbf{u}_{L}\right)$ (mean value property)
entropy-fix needed

Classical approximate Riemann solvers for Euler equations

Roe scheme
exact solution to linear Riemann problem

$$
\frac{\partial \mathbf{u}}{\partial t}+A_{L R}\left(\mathbf{u}_{L}, \mathbf{u}_{R}\right) \frac{\partial \mathbf{u}}{\partial \mathbf{x}}=0
$$

HLL scheme
Godunov-type scheme

Properties of Roe matrix $\mathbf{A}_{L R}$

- $\mathbf{A}_{L R} \approx \mathbf{A}(\mathbf{u})=D \mathbf{f}(\mathbf{u})$
- $\mathbf{A}_{L R}(\mathbf{u}, \mathbf{u})=\mathbf{A}(\mathbf{u})$
- $\mathbf{A}_{L R}$ is diagonalizable
- $\mathbf{f}\left(\mathbf{u}_{R}\right)-\mathbf{f}\left(\mathbf{u}_{L}\right)=\mathbf{A}_{L R}\left(\mathbf{u}_{R}-\mathbf{u}_{L}\right)$ (mean value property)
entropy-fix needed
- approximates only one intermediate state
- based on integral conservation law

What about higher order schemes?

Challenges posed by hyperbolic conservation laws

gust front

bow waves

- Computation of discontinuous solutions (shocks)
- Unphysical oscillations
- Needs additional numerical dissipation

Example: Burgers equation

$$
\frac{\partial u}{\partial t}+u \cdot \frac{\partial u}{\partial x}=0, \quad u(x, 0)=\sin (x)
$$

Exact solution

Example: Burgers equation

$$
\frac{\partial u}{\partial t}+u \cdot \frac{\partial u}{\partial x}=0, \quad u(x, 0)=\sin (x)
$$

Exact solution
Projection

Goal: Controll oscillations

A first approach towards higher order

FV schemes with linear reconstruction - modify left and right states

$$
u_{i}^{n+1}=u_{i}^{n}+\frac{\Delta x_{i}}{\Delta t}\left(f^{*}\left(u_{i}^{n}, u_{i+1}^{n}\right)-f^{*}\left(u_{i-1}^{n}, u_{i}^{n}\right)\right)=0
$$

A first approach towards higher order

FV schemes with linear reconstruction - modify left and right states

$$
u_{i}^{n+1}=u_{i}^{n}+\frac{\Delta x_{i}}{\Delta t}\left(f^{*}\left(u_{i}^{n}, u_{i+1}^{n}\right)-f^{*}\left(u_{i-1}^{n}, u_{i}^{n}\right)\right)=0
$$

- linear reconstruction within cells $u(x)=u_{i}+s\left(x-x_{i}\right)$
- preserve integral means
- how to compute slopes s ?
- prevent creation of new max/min

A first approach towards higher order

FV schemes with linear reconstruction - modify left and right states

$$
u_{i}^{n+1}=u_{i}^{n}+\frac{\Delta x_{i}}{\Delta t}\left(f^{*}\left(u_{i}^{n}, u_{i+1}^{n}\right)-f^{*}\left(u_{i-1}^{n}, u_{i}^{n}\right)\right)=0
$$

- linear reconstruction within cells

$$
u(x)=u_{i}+s\left(x-x_{i}\right)
$$

- preserve integral means
- how to compute slopes s ?
- prevent creation of new max/min
enforce TVD property (relates to properties of exact solution)

$$
\sum_{i}\left|u_{i+1}^{n+1}-u_{i}^{n+1}\right| \leq \sum_{i}\left|u_{i+1}^{n}-u_{i}^{n}\right|
$$

sufficient condition

$$
0 \leq\left\{\frac{\Delta x s_{i}}{u_{i}-u_{i-1}}, \frac{\Delta x s_{i}}{u_{i+1}-u_{i}}\right\} \leq 2
$$

A first approach towards higher order

FV schemes with linear reconstruction - modify left and right states

$$
u_{i}^{n+1}=u_{i}^{n}+\frac{\Delta x_{i}}{\Delta t}\left(f^{*}\left(u_{i}^{n}, u_{i+1}^{n}\right)-f^{*}\left(u_{i-1}^{n}, u_{i}^{n}\right)\right)=0
$$

- linear reconstruction within cells $u(x)=u_{i}+s\left(x-x_{i}\right)$
- preserve integral means
- how to compute slopes s ?
- prevent creation of new max/min
enforce TVD property (relates to properties of exact solution)

$$
\sum_{i}\left|u_{i+1}^{n+1}-u_{i}^{n+1}\right| \leq \sum_{i}\left|u_{i+1}^{n}-u_{i}^{n}\right|
$$

sufficient condition

$$
0 \leq\left\{\frac{\Delta x s_{i}}{u_{i}-u_{i-1}}, \frac{\Delta x s_{i}}{u_{i+1}-u_{i}}\right\} \leq 2
$$

Typical example:
$s_{i}=\frac{1}{\Delta x} \operatorname{minmod}\left(u_{i+1}-u_{i}, u_{i}-u_{i-1}\right)$,
$\operatorname{minmod}(a, b)= \begin{cases}a & |a|<|b|, a b>0 \\ b & |a| \geq|b|, a b>0 \\ 0 & \text { otherwise }\end{cases}$

ENO stands for essentially non-oscillatory

- higher order reconstruction via interpolation
- adaptively choose stencil
- avoid interpolation across shocks

The ENO reconstruction

ENO stands for essentially non-oscillatory

- higher order reconstruction via interpolation
- adaptively choose stencil
- avoid interpolation across shocks

ENO approach:

- successive increase of polynomial degree via Newton interpolation
- compare divided differences obtained by left or right extension

The ENO reconstruction

ENO stands for essentially non-oscillatory

- higher order reconstruction via interpolation
- adaptively choose stencil
- avoid interpolation across shocks

ENO approach:

- successive increase of polynomial degree via Newton interpolation
- compare divided differences obtained by left or right extension

ENO properties:

- constructs only one reconstruction polynomial
- prone to round off errors

The WENO reconstruction

WENO stands for weighted essentially non-oscillatory

- A priori: choice of main (central) stencil as well as secondary stencils
- Compute polynomial reconstruction on each stencil, conserve integral means
- Compute weights depending on oscillatory behaviour of reconstruction
- Evaluate weighted sum of reconstruction polynomials

The WENO reconstruction

WENO stands for weighted essentially non-oscillatory

- A priori: choice of main (central) stencil as well as secondary stencils
- Compute polynomial reconstruction on each stencil, conserve integral means
- Compute weights depending on oscillatory behaviour of reconstruction
- Evaluate weighted sum of reconstruction polynomials

WENO properties:

- The higher the discretization order - the higher the number of required neighbor cells
- Unstructured grids: difficult to construct stencils
- High demand on resources (CPU time / memory requirement)

From Finite Volumes ...

.. to Discontinuous Galerkin

Discontinuous Galerkin schemes

discontinuous approximate solutions

$$
\frac{d}{d t} \int_{V_{i}} \mathbf{u}_{h} \Phi d \mathbf{x}+\int_{\partial V_{i}} \mathbf{F}^{*}\left(\mathbf{u}_{h}^{-}, \mathbf{u}_{h}^{+}, \mathbf{n}\right) \Phi d \sigma-\int_{v_{i}} \mathbf{F}\left(\mathbf{u}_{h}\right) \cdot \nabla \Phi d \mathbf{x}=\int_{v_{i}} \mathbf{q}_{h} \Phi d \mathbf{x}
$$

$$
\begin{aligned}
& \text { FV: } \quad \leftrightarrow \quad \text { DG: } \\
& \Phi=\Phi_{0} \quad \Phi=\Phi_{0}, \Phi_{1}, \ldots, \Phi_{N} \\
& \rightarrow \text { Closer link to } \\
& \text { given physical equations }
\end{aligned}
$$

modern space discretization

- High accuracy \& flexibility
- Compact domains of dependance
- Highly adapted to computations in parallel

High resolution of DG scheme

Double Mach reflection: Shock hitting fixed wall

Excellent shock resolution

 \&Detailed representation of fine structures

Density distribution: FV vs. DG scheme

The triangular grid DG scheme

Hyperbolic conservation law in 2D

$$
\frac{\partial}{\partial t} \mathbf{u}(\mathbf{x}, t)+\nabla \cdot \mathbf{F}(\mathbf{u}(\mathbf{x}, t))=0, \quad(\mathbf{x}, t) \in \Omega \times \mathbb{R}^{+}
$$

Initial conditions: $\quad \mathbf{u}(\mathbf{x}, 0)=\mathbf{u}_{0}(\mathbf{x})$
Boundary conditions: inflow/outflow, reflecting walls

Hyperbolic conservation law in 2D

$$
\frac{\partial}{\partial t} \mathbf{u}(\mathbf{x}, t)+\nabla \cdot \mathbf{F}(\mathbf{u}(\mathbf{x}, t))=0, \quad(\mathbf{x}, t) \in \Omega \times \mathbb{R}^{+}
$$

Initial conditions:
$\mathbf{u}(\mathbf{x}, 0)=\mathbf{u}_{0}(\mathbf{x})$
Boundary conditions: inflow/outflow, reflecting walls

Approximation $\mathbf{u}_{h, N}(\mathbf{x}, t)$: piecewise polynomial in \mathbf{x}, degree $\leq N$

$\mathcal{T}^{h}=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{\# \mathcal{T}^{h}}\right\}$
Triangulation

The triangular grid DG scheme

Multiplication by test functions $\Phi \in \mathcal{P}^{N}\left(\tau_{i}\right)$, Integration over τ_{i}

$$
\frac{d}{d t} \int_{\tau_{i}} \mathbf{u} \Phi d \mathbf{x}+\int_{\tau_{i}} \nabla \cdot \mathbf{F}(\mathbf{u}) \Phi d \mathbf{x}=0
$$

Use divergence theorem

$$
\frac{d}{d t} \int_{\tau_{i}} \mathbf{u} \Phi d \mathbf{x}+\int_{\partial \tau_{i}} \mathbf{F}(\mathbf{u}) \cdot \mathbf{n} \Phi d \sigma-\int_{\tau_{i}} \mathbf{F}(\mathbf{u}) \cdot \nabla \Phi d \mathbf{x}=0
$$

The triangular grid DG scheme

Multiplication by test functions $\Phi \in \mathcal{P}^{N}\left(\tau_{i}\right)$, Integration over τ_{i}

$$
\frac{d}{d t} \int_{\tau_{i}} \mathbf{u} \Phi d \mathbf{x}+\int_{\tau_{i}} \nabla \cdot \mathbf{F}(\mathbf{u}) \Phi d \mathbf{x}=0
$$

Use divergence theorem

$$
\begin{gathered}
\frac{d}{d t} \int_{\tau_{i} \uparrow} \mathrm{u} \Phi d \mathbf{x}+\int_{\partial \tau_{i}} \mathrm{~F}(\mathrm{u}) \cdot \mathrm{n} \Phi d \sigma-\int_{\tau_{i}} \mathrm{~F}(\mathrm{u}) \cdot \nabla \Phi d \mathbf{x}=0 \\
\mathbf{u}_{h, N}
\end{gathered} \mathbf{F}^{*}\left(\mathbf{u}_{h, N}^{-}, \mathbf{u}_{h, N}^{+}, \mathbf{n}\right) \quad \mathbf{F}\left(\mathbf{u}_{h, N}\right)
$$

The triangular grid DG scheme
Multiplication by test functions $\Phi \in \mathcal{P}^{N}\left(\tau_{i}\right)$, Integration over τ_{i}

$$
\frac{d}{d t} \int_{\tau_{i}} \mathbf{u} \Phi d \mathbf{x}+\int_{\tau_{i}} \nabla \cdot \mathbf{F}(\mathbf{u}) \Phi d \mathbf{x}=0
$$

Use divergence theorem

$$
\begin{gathered}
\frac{d}{d t} \int_{\tau_{i} \uparrow} \mathrm{u} \Phi d \mathbf{x}+\int_{\partial \tau_{i}} \mathrm{~F}(\mathrm{u}) \cdot \mathrm{n} \Phi d \sigma-\int_{\tau_{i}} \mathrm{~F}(\mathrm{u}) \cdot \nabla \Phi d \mathbf{x}=0 \\
\mathbf{u}_{h, N}
\end{gathered} \mathbf{F}^{*}\left(\mathbf{u}_{h, N}^{-}, \mathbf{u}_{h, N}^{+}, \mathbf{n}\right) \quad \mathbf{F}\left(\mathbf{u}_{h, N}\right)
$$

Use orthogonal polynomial basis $\left\{\Phi_{1}, \Phi_{2}, \ldots, \Phi_{q(N)}\right\}$ of $\mathcal{P}^{N}\left(\tau_{i}\right)$

$$
\left.\mathbf{u}_{h, N}\right|_{\tau_{i}}(\mathbf{x}, t)=\sum_{k=1}^{q(N)} \hat{\mathbf{u}}_{k}^{i}(t) \Phi_{k}(\mathbf{x}), \quad q(N)=(N+1)(N+2) / 2
$$

With respect to orthogonal basis

Time Evolution of coefficients

$$
\frac{d}{d t} \hat{\mathbf{u}}_{k}^{i}=\left(-\int_{\partial \tau_{i}} \mathbf{F}^{*}\left(\mathbf{u}_{h, N}^{-}, \mathbf{u}_{h, N}^{+}, \mathbf{n}\right) \Phi_{k} d \sigma+\int_{\tau_{i}} \mathbf{F}\left(\mathbf{u}_{h, N}\right) \cdot \nabla \Phi_{k} d \mathbf{x}\right) /\left\|\Phi_{k}\right\|_{L^{2}}^{2}
$$

Quadrature rules

With respect to orthogonal basis

Time Evolution of coefficients

$$
\frac{d}{d t} \hat{\mathbf{u}}_{k}^{i}=\left(-\int_{\partial \tau_{i}} \mathbf{F}^{*}\left(\mathbf{u}_{h, N}^{-}, \mathbf{u}_{h, N}^{+}, \mathbf{n}\right) \Phi_{k} d \sigma+\int_{\tau_{i}} \mathbf{F}\left(\mathbf{u}_{h, N}\right) \cdot \nabla \Phi_{k} d \mathbf{x}\right) /\left\|\Phi_{k}\right\|_{L^{2}}^{2}
$$

Quadrature rules
\rightarrow System of ODEs for coefficients $\hat{\mathbf{u}}_{k}^{i}$

$$
\frac{d}{d t} \hat{\mathbf{U}}(t)=\mathcal{L}_{h, N}(\hat{\mathbf{U}}(t), t), \quad \hat{\mathbf{U}}=\left[\begin{array}{c}
\left.\hat{\mathbf{u}}_{k}^{i}\right]_{\substack{k=1, \ldots, q(N) \\
i=1, \ldots, \# \mathcal{T}^{h}}}, \substack{ \\
\hline} \\
\end{array}\right.
$$

With respect to orthogonal basis

Time Evolution of coefficients

$$
\frac{d}{d t} \hat{\mathbf{u}}_{k}^{i}=\left(-\int_{\partial \tau_{i}} \mathbf{F}^{*}\left(\mathbf{u}_{h, N}^{-}, \mathbf{u}_{h, N}^{+}, \mathbf{n}\right) \Phi_{k} d \sigma+\int_{\tau_{i}} \mathbf{F}\left(\mathbf{u}_{h, N}\right) \cdot \nabla \Phi_{k} d \mathbf{x}\right) /\left\|\Phi_{k}\right\|_{L^{2}}^{2}
$$

Quadrature rules
\rightarrow System of ODEs for coefficients $\hat{\mathbf{u}}_{k}^{i}$

$$
\frac{d}{d t} \hat{\mathbf{U}}(t)=\mathcal{L}_{h, N}(\hat{\mathbf{U}}(t), t), \quad \hat{\mathbf{U}}=\left[\begin{array}{c}
\left.\hat{\mathbf{u}}_{k}^{i}\right]_{\substack{k=1, \ldots, q(N) \\
i=1, \ldots, \# \mathcal{T}^{h}}}, \ldots \\
\end{array}\right.
$$

\rightarrow e.g. Runge Kutta time integration

With respect to orthogonal basis

Time Evolution of coefficients

$$
\frac{d}{d t} \hat{\mathbf{u}}_{k}^{i}=\left(-\int_{\partial \tau_{i}} \mathbf{F}^{*}\left(\mathbf{u}_{h, N}^{-}, \mathbf{u}_{h, N}^{+}, \mathbf{n}\right) \Phi_{k} d \sigma+\int_{\tau_{i}} \mathbf{F}\left(\mathbf{u}_{h, N}\right) \cdot \nabla \Phi_{k} d \mathbf{x}\right) /\left\|\Phi_{k}\right\|_{L^{2}}^{2}
$$

Quadrature rules
\rightarrow System of ODEs for coefficients $\hat{\mathbf{u}}_{k}^{i}$

$$
\frac{d}{d t} \hat{\mathbf{U}}(t)=\mathcal{L}_{h, N}(\hat{\mathbf{U}}(t), t), \quad \hat{\mathbf{U}}=\left[\begin{array}{c}
\left.\hat{\mathbf{u}}_{k}^{i}\right]_{\substack{k=1, \ldots, q(N) \\
i=1, \ldots, \# \mathcal{T}^{h}}}, \ldots \\
\end{array}\right.
$$

\rightarrow e.g. Runge Kutta time integration

Allows easy incorporation of modal filters Meister, Ortleb, Sonar '12

Damping strategies for DG

Modify approximate solution
Modify equation

Limiters

- Use neighboring data at shocks
- Often $N=1$

Cockburn,Shu '89
Krivodonova '07
(H)WENO-

Reconstruction

- Use stencil data
- Weighted interpol.
polynomials

Qiu,Shu '04/05

Explicit dissipation

$$
\frac{\partial \mathbf{u}}{\partial t}+\nabla \cdot \mathcal{F}(\mathbf{u})=\epsilon \Delta \mathbf{u}
$$

- In conservation law or discretization
- Time step $\mathcal{O}\left(h^{2}\right)$

Jaffre,Johnson,Szepessy '95
Persson, Peraire '06
Feistauer,Kučera '07

1D periodic case: $\quad \frac{\partial}{\partial t} u+\frac{\partial}{\partial x} f(u)=0, \quad x \in[-\pi, \pi]$
Fourier method:

$$
\begin{array}{r}
\frac{\partial}{\partial t} u_{N}+\frac{\partial}{\partial x} \mathcal{P}_{N} f\left(u_{N}\right)=0 \\
u_{N}(x, t)=\sum_{|k| \leq N} \hat{u}_{k}(t) e^{i k x}
\end{array}
$$

Modal Filtering

Modify coefficients at times t^{n}

$$
u_{N}^{\sigma}\left(x, t^{n}\right)=\sum_{|k| \leq N} \sigma\left(\frac{|k|}{N}\right) \hat{u}_{k}^{n} e^{i k x}
$$

Gottlieb, Lustman, Orzag '81

Damping for spectral methods

1D periodic case: $\quad \frac{\partial}{\partial t} u+\frac{\partial}{\partial x} f(u)=0, \quad x \in[-\pi, \pi]$
Fourier method:

$$
\begin{array}{r}
\frac{\partial}{\partial t} u_{N}+\frac{\partial}{\partial x} \mathcal{P}_{N} f\left(u_{N}\right)=0 \\
u_{N}(x, t)=\sum_{|k| \leq N} \hat{u}_{k}(t) e^{i k x}
\end{array}
$$

Modal Filtering
Modify coefficients at times t^{n}

$$
u_{N}^{\sigma}\left(x, t^{n}\right)=\sum_{|k| \leq N} \sigma\left(\frac{|k|}{N}\right) \hat{u}_{k}^{n} e^{i k x}
$$

Gottlieb, Lustman, Orzag '81

Spectral viscosity
Add special viscosity term

$$
\epsilon_{N}(-1)^{p+1} \frac{\partial^{p}}{\partial x^{p}}\left[Q_{N} \frac{\partial^{p} u_{N}}{\partial x^{p}}\right]
$$

Damping for spectral methods

1D periodic case: $\quad \frac{\partial}{\partial t} u+\frac{\partial}{\partial x} f(u)=0, \quad x \in[-\pi, \pi]$
Fourier method:

$$
\begin{array}{r}
\frac{\partial}{\partial t} u_{N}+\frac{\partial}{\partial x} \mathcal{P}_{N} f\left(u_{N}\right)=0 \\
u_{N}(x, t)=\sum_{|k| \leq N} \hat{u}_{k}(t) e^{i k x}
\end{array}
$$

Modal Filtering

Modify coefficients at times t^{n}

$$
u_{N}^{\sigma}\left(x, t^{n}\right)=\sum_{|k| \leq N} \sigma\left(\frac{|k|}{N}\right) \hat{u}_{k}^{n} e^{i k x}
$$

Simple implementation

Spectral viscosity

Add special viscosity term
Link
$\longleftrightarrow \epsilon_{N}(-1)^{p+1} \frac{\partial^{p}}{\partial x^{p}}\left[Q_{N} \frac{\partial^{p} u_{N}}{\partial x^{p}}\right]$

Convergence theory, Parameter choice

Shock-density interaction (Shu-Osher test case)

Initial conditions

$$
\left(\rho, v_{1}, v_{2}, p\right)=\left\{\begin{array}{cl}
(3.857143,2.629369,0,10.333333) & \text { if } x<-4 \\
(1+0.2 \cdot \sin (5 x), 0,0,1) & \text { if } x \geq-4
\end{array}\right.
$$

DG with modal filtering approximate density solution $(t=1.8)$

Discretization: $N=5, K=1250$

Further classical test cases

shock-vortex interaction

$$
\text { pressure } N=7, K=2122
$$

Finite Volumes \& Discontinuous Galerkin ...

.. and beyond?

Contents

(1) The Finite Volume Method

2) The Discontinuous Galerkin Scheme

(3) SBP Operators \& Flux Reconstruction

4 Current High Performance DG / FR Schemes

- Finite Volume Method
- Discontinuous Galerkin Method Cockburn/Shu '89
- Spectral Difference Method Kopriva/Kolias '96, Liu et al. '06, Wang et al. '07
- Flux Reconstruction Method Huynh '11
- VCJH Energy Stable FR Method Vincent et al. '10
- SBP-SAT schemes Originally: Kreiss/Scherer '74

The 1D DG scheme

Scalar hyperbolic conservation law in 1D

$$
\frac{\partial}{\partial t} u(x, t)+\frac{\partial}{\partial x} f(u(x, t))=0, \quad t>0, x \in \Omega=[\alpha, \beta]
$$

The 1D DG scheme

Scalar hyperbolic conservation law in 1D

$$
\frac{\partial}{\partial t} u(x, t)+\frac{\partial}{\partial x} f(u(x, t))=0, \quad t>0, x \in \Omega=[\alpha, \beta]
$$

Subdivision of Ω in

$$
\Omega=\bigcup_{i} \Omega_{i}=\bigcup_{i}\left[x_{i}, x_{i+1}\right]
$$

approximation of u on Ω_{i}

$$
\begin{array}{ll}
u_{h}^{i}(x, t)=\sum_{k=1}^{N+1} u_{l}^{i}(t) \Phi_{l}^{i}(x) & \text { with basis functions } \Phi_{l}^{i} \\
\underline{u}^{i}=\left(u_{1}^{i}, \ldots, u_{p+1}^{i}\right)^{T} & \text { solution vector }
\end{array}
$$

The DG scheme in strong form
$\int_{\Omega_{i}} \frac{\partial u_{h}^{i}}{\partial t} \Phi_{k}^{i} d x+\int_{\Omega_{i}} \frac{\partial f_{h}^{i}}{\partial x} \Phi_{k}^{i} d x=\left[f_{i-1, i}^{*}-f_{h}^{i}\left(x_{i}\right)\right] \Phi_{k}^{i}\left(x_{i}\right)-\left[f_{i, i+1}^{*}-f_{h}^{i}\left(x_{i+1}\right)\right] \Phi_{k}^{i}\left(x_{i+1}\right)$

The 1D DG scheme

Scalar hyperbolic conservation law in 1D

$$
\frac{\partial}{\partial t} u(x, t)+\frac{\partial}{\partial x} f(u(x, t))=0, \quad t>0, x \in \Omega=[\alpha, \beta]
$$

Subdivision of Ω in

$$
\Omega=\bigcup_{i} \Omega_{i}=\bigcup_{i}\left[x_{i}, x_{i+1}\right]
$$

approximation of u on Ω_{i}

$$
\begin{array}{ll}
u_{h}^{i}(x, t)=\sum_{k=1}^{N+1} u_{l}^{i}(t) \Phi_{l}^{i}(x) & \text { with basis functions } \Phi_{l}^{i} \\
\underline{u}^{i}=\left(u_{1}^{i}, \ldots, u_{p+1}^{i}\right)^{T} & \text { solution vector }
\end{array}
$$

The DG scheme in strong form
$\int_{\Omega_{i}} \frac{\partial u_{h}^{i}}{\partial t} \Phi_{k}^{i} d x+\int_{\Omega_{i}} \frac{\partial f_{h}^{i}}{\partial x} \Phi_{k}^{i} d x=\left[f_{i-1, i}^{*}-f_{h}^{i}\left(x_{i}\right)\right] \Phi_{k}^{i}\left(x_{i}\right)-\left[f_{i, i+1}^{*}-f_{h}^{i}\left(x_{i+1}\right)\right] \Phi_{k}^{i}\left(x_{i+1}\right)$
equivalent to

$$
\begin{array}{ll}
& M_{k l}^{i}=\int_{\Omega_{i}} \Phi_{k}^{i} \Phi_{l}^{i} d x \\
\underline{\underline{M}}^{i} & \frac{d \underline{u}^{i}}{d t}+\underline{S}^{i} \underline{f}^{i}=\left[\left(f_{h}-f^{*}\right) \underline{\Phi}^{i}\right]_{x_{i}}^{x_{i+1}} \\
& S_{k l}^{i}=\int_{\Omega_{i}}^{i} \Phi_{k}^{i} \frac{\partial}{\partial x} \Phi_{l}^{i} d x \\
\underline{\Phi}^{i}=\left(\Phi_{1}^{i}, \ldots, \Phi_{p+1}^{i}\right)^{T}
\end{array}
$$

SBP schemes

Generalized definition of 1D SBP scheme
Del Rey Fernández et al. '14

- $\underline{\underline{M}}$ symmetric positive definite
- $\underline{\underline{D}}:=\underline{\underline{M}}^{-1} \underline{\underline{S}}$ approximates $\frac{\partial}{\partial x}$
- $\underline{\underline{S}}+\underline{\underline{S}}^{T}=\underline{\underline{B}}$ with $\left(\underline{x}^{\mu}\right)^{T} \underline{\underline{B}} \underline{x}^{\nu}=\left(x_{i+1}\right)^{\mu+\nu}-\left(x_{i}\right)^{\mu+\nu}$ $\overline{\mathrm{SBP}}$ mimics integration by parts

Generalized definition of 1D SBP scheme
Del Rey Fernández et al. '14

- $\underline{\underline{M}}$ symmetric positive definite
- $\underline{\underline{D}}:=\underline{\underline{M}}^{-1} \underline{\underline{S}}$ approximates $\frac{\partial}{\partial x}$
- $\underline{\underline{S}}+\underline{\underline{S}}^{T}=\underline{\underline{B}}$ with $\left(\underline{x}^{\mu}\right)^{T} \underline{\underline{B}} \underline{x}^{\nu}=\left(x_{i+1}\right)^{\mu+\nu}-\left(x_{i}\right)^{\mu+\nu}$ SBP mimics integration by parts
fulfilled by DG scheme

$$
M_{k l}=\int_{\Omega_{i}} \Phi_{k} \Phi, d x
$$

$$
\underline{\underline{M}} \frac{d \underline{u}}{d t}+\underline{\underline{S f}}=\left[\left(f_{h}-f^{*}\right) \underline{]_{1}}\right]_{x_{i}}^{x_{i+1}} \quad \begin{array}{ll}
S_{k l}=\int_{\Omega_{i}} \Phi_{k} \frac{\partial}{\partial \times} \Phi, d x \\
B_{k l}=\left[\Phi_{k} \Phi_{1}\right]_{x_{i}+1}^{x_{i+1}}
\end{array}
$$

Gauss-Lobatto (GLL) and Gauss-Legendre (GL) DG schemes:

$$
\begin{aligned}
& \underline{\underline{B}}_{G L L}=\operatorname{diag}\{-1,0, \ldots, 0,1\}, \\
& \underline{\underline{B}}_{G L, N=1}=\operatorname{diag}\{-\sqrt{3}, \sqrt{3}\}, \quad \underline{\underline{B}}_{G L, N=2}=\left(\begin{array}{ccc}
-\frac{1}{\xi^{3}} & \frac{1-\xi^{2}}{\xi^{3}} & 0 \\
\frac{1-\xi^{2}}{\xi^{3}} & 0 & \frac{\xi^{2}-1}{\xi^{3}} \\
0 & \frac{\xi^{2}-1}{\xi^{3}} & \frac{1}{\xi^{3}}
\end{array}\right), \xi=\sqrt{\frac{3}{5}}
\end{aligned}
$$

Advantages of SBP schemes

Provable linear stability
Energy stability w.r.t. $\frac{1}{2}\|\underline{\underline{u}}\|_{\underline{M}}^{2}$

Provable linear stability
Energy stability w.r.t. $\frac{1}{2}\|\underline{\|}\|_{\underline{\underline{M}}}^{2}$
Relation to quadrature formulae
Corresponding QF preserve certain properties of functional
e.g. discrete divergence theorem Hicken/Zingg '13

Provable linear stability
Energy stability w.r.t. $\frac{1}{2}\|\underline{\|}\|_{\underline{\underline{M}}}^{2}$
Relation to quadrature formulae
Corresponding QF preserve certain properties of functional
e.g. discrete divergence theorem Hicken/Zingg '13

Correct discretization of split form conservation laws

- split forms (e.g. skew-symmetric)
- \rightarrow Better control of oscillations
- preservation of secondary quantities, e.g. \rightarrow kinetic energy

Provable linear stability
Energy stability w.r.t. $\frac{1}{2}\|\underline{\|}\|_{\underline{\underline{M}}}^{2}$
Relation to quadrature formulae
Corresponding QF preserve certain properties of functional
e.g. discrete divergence theorem Hicken/Zingg '13

Correct discretization of split form conservation laws

- split forms (e.g. skew-symmetric)
- \rightarrow Better control of oscillations
- preservation of secondary quantities, e.g. \rightarrow kinetic energy
- possible lack of discrete conservation

Advantages of SBP schemes

Provable linear stability
Energy stability w.r.t. $\frac{1}{2}\|\underline{\|}\|_{\underline{\underline{M}}}^{2}$
Relation to quadrature formulae
Corresponding QF preserve certain properties of functional
e.g. discrete divergence theorem Hicken/Zingg '13

Correct discretization of split form conservation laws

- split forms (e.g. skew-symmetric)
- \rightarrow Better control of oscillations
- preservation of secondary quantities, e.g. \rightarrow kinetic energy
- possible lack of discrete conservation
- SBP schemes: equivalent telescoping form Fisher et al. '12
\rightarrow if convergent, then weak solution (Lax-Wendroff)

Observation

Discontinuous Galerkin

Energy Stable Flux Reconstruction (VCJH)

Observation

Discontinuous Galerkin
Energy Stable Flux Reconstruction (VCJH)

These methods meet as SBP schemes!

Spectral difference and flux reconstruction schemes

The SD scheme [Wang et al. '07] Construction of $f^{S D}$

$$
\frac{\partial u}{\partial t}+\frac{\partial f^{S D}}{\partial x}=0
$$

Spectral difference and flux reconstruction schemes

The SD scheme [Wang et al. '07] Construction of $f^{S D}$

$$
\frac{\partial u}{\partial t}+\frac{\partial f^{S D}}{\partial x}=0
$$

Generalized by FR scheme [Huynh '11]

$$
\begin{aligned}
& \quad f^{F R}=f_{h}^{i}+\underbrace{\left[f_{i-1, i}^{*}-f_{h}^{i}\left(x_{i}\right)\right]}_{f_{C L}} g_{L}+\underbrace{\left[f_{i, i+1}^{*}-f_{h}^{i}\left(x_{i+1}\right)\right]}_{f_{C R}} g_{R} \\
& \text { where } g_{L}, g_{R} \in P^{N+1} \text { with } \begin{cases}g_{L}\left(x_{i}\right)=1 & g_{R}\left(x_{i}\right)=0 \\
g_{L}\left(x_{i+1}\right)=0 & g_{R}\left(x_{i+1}\right)=1\end{cases}
\end{aligned}
$$

DG for g_{L}, g_{R} right \& left Radau polynomials

Spectral difference and flux reconstruction schemes

The SD scheme [Wang et al. '07] Construction of $f^{S D}$

$$
\frac{\partial u}{\partial t}+\frac{\partial f^{S D}}{\partial x}=0
$$

Generalized by FR scheme [Huynh '11]

$$
\begin{aligned}
& \quad f^{F R}=f_{h}^{i}+\underbrace{\left[f_{i-1, i}^{*}-f_{h}^{i}\left(x_{i}\right)\right]}_{f_{C L}} g_{L}+\underbrace{\left[f_{i, i+1}^{*}-f_{h}^{i}\left(x_{i+1}\right)\right]}_{f_{C R}} g_{R} \\
& \text { where } g_{L}, g_{R} \in P^{N+1} \text { with } \begin{cases}g_{L}\left(x_{i}\right)=1 & g_{R}\left(x_{i}\right)=0 \\
g_{L}\left(x_{i+1}\right)=0 & g_{R}\left(x_{i+1}\right)=1\end{cases}
\end{aligned}
$$

DG for g_{L}, g_{R} right \& left Radau polynomials
in matrix-vector form [Allaneau/Jameson '11]

- expand u_{h}, f_{h} and $g_{L}^{\prime}, g_{R}^{\prime}$ in same basis $\left\{\Phi_{k}\right\}$
- multiply by $\underline{\underline{M}}$

$$
\underline{\underline{M}} \frac{d \underline{\underline{u}}}{d t}+\underline{\underline{S}} \underline{f}=-f_{C L} \underline{\underline{M}} \underline{g_{L}^{\prime}}-f_{C R} \underline{\underline{M}} \underline{g_{R}^{\prime}}
$$ with $M_{k l}=\int_{\Omega_{i}} \Phi_{k} \Phi_{l} d x$

Spectral difference and flux reconstruction schemes

The SD scheme [Wang et al. '07] Construction of $f^{S D}$

$$
\frac{\partial u}{\partial t}+\frac{\partial f^{S D}}{\partial x}=0
$$

Generalized by FR scheme [Huynh '11]

$$
\begin{aligned}
& \quad f^{F R}=f_{h}^{i}+\underbrace{\left[f_{i-1, i}^{*}-f_{h}^{i}\left(x_{i}\right)\right]}_{f_{C L}} g_{L}+\underbrace{\left[f_{i, i+1}^{*}-f_{h}^{i}\left(x_{i+1}\right)\right]}_{f_{C R}} g_{R} \\
& \text { where } g_{L}, g_{R} \in P^{N+1} \text { with } \begin{cases}g_{L}\left(x_{i}\right)=1 & g_{R}\left(x_{i}\right)=0 \\
g_{L}\left(x_{i+1}\right)=0 & g_{R}\left(x_{i+1}\right)=1\end{cases}
\end{aligned}
$$

DG for g_{L}, g_{R} right \& left Radau polynomials
in matrix-vector form [Allaneau/Jameson '11]

- expand u_{h}, f_{h} and $g_{L}^{\prime}, g_{R}^{\prime}$ in same basis $\left\{\Phi_{k}\right\}$
- multiply by $\underline{\underline{M}}$

$$
\underline{\underline{M}} \frac{d \underline{\underline{u}}}{d t}+\underline{\underline{S}} \underline{f}=-f_{C L} \underline{\underline{M}} \underline{g_{L}^{\prime}}-f_{C R} \underline{\underline{M}} \underline{g_{R}^{\prime}}
$$

$$
\text { with } M_{k l}=\int_{\Omega_{i}} \Phi_{k} \Phi_{l} d x \quad\left[\frac{d \underline{u}}{d t}+\underline{\underline{D}} \underline{f}=-f_{C L} \underline{g}_{L}^{\prime}-f_{C R} \underline{g}_{R}^{\prime}, \underline{\underline{D}}=\underline{\underline{M}}^{-1} \underline{\underline{S}}\right]
$$

Relation of FR framework to DG scheme
Reformulate

$$
\underline{\underline{M}} \frac{d \underline{\underline{u}}}{d t}+\underline{\underline{S f}}=-f_{C L} \underline{\underline{M}} \underline{g}_{L}^{\prime}-f_{C R} \underline{\underline{M}} \underline{g}_{R}^{\prime}
$$

$$
\begin{aligned}
& f_{C L}=f_{i-1, i}^{*}-f_{h}^{i}\left(x_{i}\right) \\
& f_{C R}=f_{i, i+1}^{*}-f_{h}^{i}\left(x_{i+1}\right)
\end{aligned}
$$

Relation of FR framework to DG scheme

Reformulate

$$
f_{C L}=f_{i-1, i}^{*}-f_{h}^{i}\left(x_{i}\right)
$$

$$
\underline{\underline{M}} \frac{d \underline{u}}{d t}+\underline{\underline{S f}}=-f_{C L} \underline{\underline{M}} \underline{g}_{L}^{\prime}-f_{C R} \underline{\underline{M}} \underline{g}_{R}^{\prime}
$$

As $\quad \underline{\underline{M}} \underline{g}^{\prime}=\int_{\Omega_{i}} g^{\prime} \underline{\Phi} d x=\left[g \underline{]_{x_{i}}^{x_{i+1}}-\int_{\Omega_{i}} g \underline{\Phi}^{\prime} d x \quad\left(\underline{g}^{\prime} \text { is representation of } g^{\prime}\right), ~(x)}\right.$

Relation of FR framework to DG scheme

Reformulate

$$
\underline{\underline{M}} \frac{d \underline{u}}{d t}+\underline{\underline{S} f}=-f_{C L} \underline{\underline{M}} \underline{g}_{L}^{\prime}-f_{C R} \underline{\underline{M}} \underline{\underline{g}}_{R}^{\prime} \quad f_{C R}=f_{i, i+1}^{*}-f_{h}^{j}\left(x_{i+1}\right)
$$

As $\quad \underline{\underline{M}} \underline{g}^{\prime}=\int_{\Omega_{i}} g^{\prime} \underline{\Phi} d x=[g \Phi]_{x_{i}}^{x_{i+1}}-\int_{\Omega_{i}} g \underline{\Phi}^{\prime} d x \quad\left(\underline{g}^{\prime}\right.$ is representation of $\left.g^{\prime}\right)$
we have $\quad\left(\right.$ as $\left.g_{R}\left(x_{i}\right)=g_{L}\left(x_{i+1}\right)=0\right)$

$$
R H S_{F R}=\underbrace{f_{C L} \Phi\left(x_{i}\right)-f_{C R} \Phi\left(x_{i+1}\right)}_{R H S_{D G}}+\underbrace{\int_{\Omega_{i}}\left(f_{C L} g_{L}+f_{C R} g_{R}\right) \Phi^{\prime} d x}_{\text {Deviation from DG }}
$$

Relation of FR framework to DG scheme

Reformulate

$$
\underline{\underline{M}} \frac{d \underline{u}}{d t}+\underline{\underline{S} f}=-f_{C L} \underline{\underline{M}} \underline{g}_{L}^{\prime}-f_{C R} \underline{\underline{M}} \underline{\underline{g}}_{R}^{\prime} \quad f_{C R}=f_{i, i+1}^{*}-f_{h}^{j}\left(x_{i+1}\right)
$$

As $\quad \underline{\underline{M}} \underline{g}^{\prime}=\int_{\Omega_{i}} g^{\prime} \underline{\Phi} d x=[g \Phi]_{x_{i}}^{x_{i+1}}-\int_{\Omega_{i}} g \underline{\Phi}^{\prime} d x \quad\left(\underline{g}^{\prime}\right.$ is representation of $\left.g^{\prime}\right)$
we have $\quad\left(\right.$ as $\left.g_{R}\left(x_{i}\right)=g_{L}\left(x_{i+1}\right)=0\right)$

$$
R H S_{F R}=\underbrace{f_{C L} \Phi\left(x_{i}\right)-f_{C R} \Phi\left(x_{i+1}\right)}_{R H S_{D G}}+\underbrace{\int_{\Omega_{i}}\left(f_{C L L}+f_{C R} g_{R}\right) \Phi^{\prime} d x}_{\text {Deviation from DG }}
$$

\Rightarrow Two equivalent formulations for FR scheme:

$$
\begin{aligned}
\underline{\underline{M}} \frac{d \underline{u}}{d t}+\underline{\underline{S}} \underline{f} & =R H S_{D G}+\int_{\Omega_{i}}\left(f_{C L} g_{L}+f_{C R} g_{R}\right) \Phi^{\prime} d x \\
\frac{d \underline{u}}{d t}+\underline{\underline{D}} \underline{f} & =-f_{C L} \underline{g}_{L}^{\prime}-f_{C R} \underline{g}_{R}^{\prime}
\end{aligned}
$$

VCJH schemes: energy stable FR

Derivation of energy stable FR schemes:

$$
\begin{aligned}
\underline{\underline{M}} \frac{d \underline{u}}{d t}+\underline{\underline{S}} \underline{f} & =R H S_{D G}+\int_{\Omega_{i}}\left(f_{C L} g_{L}+f_{C R} g_{R}\right) \Phi^{\prime} d x \\
\underline{\underline{K}} \frac{d \underline{\underline{u}}}{d t}+\underline{\underline{K}} \underline{\underline{D} f} & =-f_{C L} \underline{\underline{K}} \underline{g}_{L}^{\prime}-f_{C R} \underline{\underline{K}} \underline{g}_{R}^{\prime}, \quad \underline{\underline{K}} \text { pos. semidef. with } \underline{\underline{K}} \underline{\underline{D}}=\underline{0}
\end{aligned}
$$

VCJH schemes: energy stable FR

Derivation of energy stable FR schemes:

$$
\begin{aligned}
\underline{\underline{M}} \underline{d \underline{u}} d t+\underline{\underline{S}} \underline{f} & =R H S_{D G}+\int_{\Omega_{i}}\left(f_{C L} g_{L}+f_{C R} g_{R}\right) \Phi^{\prime} d x \\
\underline{\underline{K}} \frac{d \underline{u}}{d t}+\underline{\underline{K}} \underline{\underline{D} f} & =-f_{C L} \underline{\underline{K}} \underline{\underline{g}}_{L}^{\prime}-f_{C R} \underline{\underline{K}} \underline{\underline{g}}_{R}^{\prime}, \quad \underline{\underline{K}} \text { pos. semidef. with } \underline{\underline{K}} \underline{\underline{D}}=\underline{0}
\end{aligned}
$$

Summing up yields

$$
(\underline{\underline{M}}+\underline{\underline{K}}) \frac{d \underline{\underline{u}}}{d t}+\underline{\underline{S}}=R H S_{D G}+f_{C L}\left(\int_{\Omega_{i}} g_{L} \underline{\phi}^{\prime} d x-\underline{\underline{K}} \underline{g_{L}^{\prime}}\right)+f_{C R}\left(\int_{\Omega_{i}} g_{R} \underline{\Phi}^{\prime} d x-\underline{\underline{K}} \underline{g_{R}^{\prime}}\right)
$$

VCJH schemes: energy stable FR

Derivation of energy stable FR schemes:

$$
\begin{aligned}
\underline{\underline{M}} \frac{d \underline{u}}{d t}+\underline{\underline{S}} \underline{f} & =R H S_{D G}+\int_{\Omega_{i}}\left(f_{C L} g_{L}+f_{C R} g_{R}\right) \Phi^{\prime} d x \\
\underline{\underline{K}} \frac{d \underline{u}}{d t}+\underline{\underline{K}} \underline{\underline{D} f} & =-f_{C L} \underline{\underline{K}} \underline{\underline{g}}_{L}^{\prime}-f_{C R} \underline{\underline{K}} \underline{\underline{g}}_{R}^{\prime}, \quad \underline{\underline{K}} \text { pos. semidef. with } \underline{\underline{K}} \underline{\underline{D}}=\underline{0}
\end{aligned}
$$

Summing up yields
$(\underline{\underline{M}}+\underline{\underline{K}}) \frac{d \underline{\underline{u}}}{d t}+\underline{\underline{S} f}=R H S_{D G}+f_{C L}\left(\int_{\Omega_{i}} g_{L} \underline{\phi}^{\prime} d x-\underline{\underline{K}} \underline{g}_{L}^{\prime}\right)+f_{C R}\left(\int_{\Omega_{i}} g_{R} \underline{\Phi}^{\prime} d x-\underline{\underline{K} \underline{g}_{R}^{\prime}}\right)$
VCJH schemes [Vincent/Castonguay/Jameson '10]

- Choose g_{L}, g_{R} such that red terms vanish for suitable $\underline{\underline{K}}$

VCJH schemes: energy stable FR

Derivation of energy stable FR schemes:

$$
\begin{aligned}
\underline{\underline{M}} \underline{d \underline{u}} d t+\underline{\underline{S}} \underline{f} & =R H S_{D G}+\int_{\Omega_{i}}\left(f_{C L} g_{L}+f_{C R} g_{R}\right) \Phi^{\prime} d x \\
\underline{\underline{K}} \frac{d \underline{u}}{d t}+\underline{\underline{K}} \underline{\underline{D} f} & =-f_{C L} \underline{\underline{K}} \underline{\underline{g}}_{L}^{\prime}-f_{C R} \underline{\underline{K}} \underline{\underline{g}}_{R}^{\prime}, \quad \underline{\underline{K}} \text { pos. semidef. with } \underline{\underline{K}} \underline{\underline{D}}=\underline{0}
\end{aligned}
$$

Summing up yields
$(\underline{\underline{M}}+\underline{\underline{K}}) \frac{d \underline{\underline{u}}}{d t}+\underline{\underline{S} f}=R H S_{D G}+f_{C L}\left(\int_{\Omega_{i}} g_{L} \underline{\phi}^{\prime} d x-\underline{\underline{K}} \underline{g}_{L}^{\prime}\right)+f_{C R}\left(\int_{\Omega_{i}} g_{R} \underline{\Phi}^{\prime} d x-\underline{\underline{K} \underline{g}_{R}^{\prime}}\right)$

VCJH schemes [Vincent/Castonguay/Jameson '10]

- Choose g_{L}, g_{R} such that red terms vanish for suitable $\underline{\underline{K}}$
- Similar to DG: $\underline{\underline{M}} \rightsquigarrow \underline{\underline{M}}+\underline{\underline{K}}$ (modified mass matrix) \rightarrow "filtered DG scheme" [Aㄹllaneau/Jameson '11]

VCJH schemes: energy stable FR

Derivation of energy stable FR schemes:

$$
\begin{aligned}
\underline{\underline{M}} \underline{d \underline{u}} d t+\underline{\underline{S}} \underline{f} & =R H S_{D G}+\int_{\Omega_{i}}\left(f_{C L} g_{L}+f_{C R} g_{R}\right) \Phi^{\prime} d x \\
\underline{\underline{K}} \frac{d \underline{u}}{d t}+\underline{\underline{K}} \underline{\underline{D} f} & =-f_{C L} \underline{\underline{K}} \underline{\underline{g}}_{L}^{\prime}-f_{C R} \underline{\underline{K}} \underline{\underline{g}}_{R}^{\prime}, \quad \underline{\underline{K}} \text { pos. semidef. with } \underline{\underline{K}} \underline{\underline{D}}=\underline{0}
\end{aligned}
$$

Summing up yields
$(\underline{\underline{M}}+\underline{\underline{K}}) \frac{d \underline{\underline{u}}}{d t}+\underline{\underline{S} f}=R H S_{D G}+f_{C L}\left(\int_{\Omega_{i}} g_{L} \underline{\phi}^{\prime} d x-\underline{\underline{K}} \underline{g}_{L}^{\prime}\right)+f_{C R}\left(\int_{\Omega_{i}} g_{R} \underline{\Phi}^{\prime} d x-\underline{\underline{K} \underline{g}_{R}^{\prime}}\right)$

VCJH schemes [Vincent/Castonguay/Jameson '10]

- Choose g_{L}, g_{R} such that red terms vanish for suitable $\underline{\underline{K}}$
- Similar to DG: $\underline{\underline{M}} \rightsquigarrow \underline{\underline{M}}+\underline{\underline{K}}$ (modified mass matrix) \rightarrow "filtered DG scheme" [AIllaneau/Jameson '11]
- Fulfills SBP property! $\left[\underline{\underline{D}}=\underline{\underline{M}}^{-1} \underline{\underline{S}}=(\underline{\underline{M}}+\underline{\underline{K}})^{-1} \underline{\underline{S}}\right]$

Comparison of low order DGSBP schemes

\&

Use of kinetic energy preservation and skew-symmetric forms

Smooth solutions to 1D Navier-Stokes equations

Non-linear acoustic pressure wave

$$
\rho(x, 0)=1, v(x, 0)=1, p(x, 0)=1+0.1 \sin (2 \pi x), x \in[0,1]
$$

periodic BC , viscosity $\mu=0.002$, Prandtl number $\operatorname{Pr}=0.72$

Gauss-Legendre vs. Gauss-Lobatto nodes
[$N=1$ on 80 cells, KEP flux, $T=20$; reference: $N=3$ on 500 cells]

Higher accuracy of Gauss-Legendre DG scheme.

2D decaying homogeneous turbulence

Computed on cartesian grid discretizing $\Omega=[0,2 \pi]^{2}$, periodic b.c.

$T=1 \quad T=2$

$$
T=1
$$

$T=5$
$T=10$
$T=0$: Initial energy spectrum given in Fourier space by

$$
E(k)=\frac{a_{s}}{2} \frac{1}{k_{p}}\left(\frac{k}{k_{p}}\right)^{2 s+1} \exp \left[-\left(s+\frac{1}{2}\right)\left(\frac{k}{k_{p}}\right)^{2}\right]
$$

for wave number $k=\sqrt{k_{x}^{2}+k_{y}^{2}} \quad$ (Parameters $k_{p}=12, a_{s}=\frac{7^{4}}{48}$)

Comparison standard DG vs. DG-KEP scheme (I)

Energy spectrum $T=10$
Gauss nodes, $N=1$
$\mathrm{Re}=100$

SBP operators allow for conservative discretization of fluid equations in skew-symmetric form.

Comparison standard DG vs. DG-KEP scheme (II)

$$
\operatorname{Re}=600
$$

Better representation of energy spectrum for KEP scheme. Specifically for in underresolved case.

Current successful implementations

 of DG and FR schemes
The FLEXI Project

https://www.flexi-project.org

- DG space discretization
- explicit time stepping
- massive scalability
F. Hindenlang, G. J. Gassner, C. Altmann, A. Beck, M. Staudenmaier, C. Munz, "Explicit discontinuous Galerkin methods for unsteady problems", Computers \& fluids 61, pp. 86-93, 2012.

Flux reconstrution with Python: PyFR

http://www.pyfr.org/index.php

F. D. Witherden, A. M. Farrington, P. E. Vincent, "PyFR: An Open Source Framework for Solving Advection-Diffusion Type Problems on Streaming Architectures using the Flux Reconstruction Approach", Computer Physics Communications 185, pp. 3028-3040, 2014.

Spectral/hp Element Framework: Nektar++

http://www.nektar.info/gallery/

C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D.

De Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y.
Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto, R.M. Kirby, S.J.
Sherwin, "Nektar++: An open-source spectral/ element framework",
Computer Physics Communications 192, pp. 205-219, 2015.

DG for OpenFOAM ?

http://www.sfb1194.tu-darmstadt.de/teilprojekte_4/b/b05_1/index.de.jsp

- developement within DG framework BoSSS (Bounded Support Spectral Solver)
- to be successively implemented in OpenFOAM

N. Müller, S. Krämer-Eis, F. Kummer, M. Oberlack, "A high-order discontinuous Galerkin method for compressible flows with immersed boundaries", Int. J. Numer. Meth. Engng. 110, pp. 3-30, 2017.

Summary

(1) The Finite Volume Method
(2) The Discontinuous Galerkin Scheme
3) SBP Operators \& Flux Reconstruction

4 Current High Performance DG / FR Schemes

Thank you for your attention!

