From Finite Volumes to Discontinuous Galerkin and Flux Reconstruction

Sigrun Ortleb

Department of Mathematics and Natural Sciences, University of Kassel

GOFUN 2017 OpenFOAM user meeting March 21, 2017

> UNIKASSEL MATHEMATICS VERSITAT AND NATURAL SCIENCES

Numerical simulation of fluid flow

This includes flows of liquids and gases such as flow of air or flow of water

Spreading of Tsunami waves

Weather prediction

Flow through sea gates

Flow around airplanes

Requirements on numerical solvers

- High accuracy of computation
- Detailed resolution of physical phenomena
- Stability and efficiency, robustness
- Compliance with physical laws (e.g. conservation)

- 2 The Discontinuous Galerkin Scheme
- 3 SBP Operators & Flux Reconstruction
- 4 Current High Performance DG / FR Schemes

Derivation of fluid equations

Based on

- physical principles: conservation of quantities & balance of forces
- mathematical tools: Reynolds transport & Gauß divergence theorem

Different formulations:

Integral conservation law $\frac{d}{dt} \int_{V} \mathbf{u} \, d\mathbf{x} + \int_{\partial V} \mathbf{F}(\mathbf{u}, \nabla \mathbf{u}) \cdot \mathbf{n} \, d\sigma = \int_{V} \mathbf{s}(\mathbf{u}, \mathbf{x}, t) \, d\mathbf{x}$

Partial differential equation $\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot \mathbf{F} = \mathbf{s}$

embodies the physical principles

Derivation of the continuity equation

Based on Reynolds transport theorem

$$\frac{d}{dt} \int_{V_t} u(\mathbf{x}, t) \, d\mathbf{x} = \int_{V_t} \frac{\partial u(\mathbf{x}, t)}{\partial t} d\mathbf{x} + \int_{\partial V_t} u(\mathbf{x}, t) \, \mathbf{v} \cdot \mathbf{n} \, d\sigma$$
rate of change rate of change convective transfer

in moving volume

rate of change in fixed volume + convective transfer through surface

 $(V_t \text{ control volume of fluid particles})$

Derivation of the continuity equation

Based on Reynolds transport theorem

$$\frac{d}{dt} \int_{V_t} u(\mathbf{x}, t) \, d\mathbf{x} = \int_{V_t} \frac{\partial u(\mathbf{x}, t)}{\partial t} d\mathbf{x} + \int_{\partial V_t} u(\mathbf{x}, t) \, \mathbf{v} \cdot \mathbf{n} \, d\sigma$$

rate of change in moving volume rate of change in fixed volume convective transfer through surface

 $(V_t \text{ control volume of fluid particles})$

Physical principle: conservation of mass

$$\frac{dm}{dt} = \frac{d}{dt} \int_{V_t} \rho \, d\mathbf{x} = \int_{V_t} \frac{\partial \rho}{\partial t} d\mathbf{x} + \int_{\partial V_t} \rho \mathbf{v} \cdot \mathbf{n} \, d\sigma = 0$$

Derivation of the continuity equation

Based on Reynolds transport theorem

$$\frac{d}{dt}\int_{V_t} u(\mathbf{x},t)\,d\mathbf{x} = \int_{V_t} \frac{\partial u(\mathbf{x},t)}{\partial t}d\mathbf{x} + \int_{\partial V_t} u(\mathbf{x},t)\,\mathbf{v}\cdot\mathbf{n}\,d\sigma$$

rate of change in moving volume

rate of change in fixed volume convective transfer through surface

 $(V_t \text{ control volume of fluid particles})$

Physical principle: conservation of mass

$$\frac{dm}{dt} = \frac{d}{dt} \int_{V_t} \rho \, d\mathbf{x} = \int_{V_t} \frac{\partial \rho}{\partial t} d\mathbf{x} + \int_{\partial V_t} \rho \mathbf{v} \cdot \mathbf{n} \, d\sigma = 0$$

Divergence theorem yields

$$\int_{V \equiv V_t} \left[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) \right] d\mathbf{x} = 0 \quad \Rightarrow \quad \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

continuity equation

The compressible Navier-Stokes equations

... are based on conservation of mass, momentum and energy

$$rac{\partial \mathbf{u}}{\partial t} +
abla \cdot \mathbf{F} = \mathbf{s} \qquad \left[rac{\partial \mathbf{u}}{\partial t} +
abla \cdot \mathbf{F}^{inv} +
abla \cdot (A(\mathbf{u})
abla \mathbf{u}) = \mathbf{s}
ight]$$

inviscid & viscous fluxes

Conservative variables $u \in \mathbb{R}^5$, fluxes $\mathbf{F} \in \mathbb{R}^{3 \times 5}$ and sources $\mathbf{s} \in \mathbb{R}^5$

$$\mathbf{u} = \begin{pmatrix} \rho \\ \rho \mathbf{v} \\ \rho E \end{pmatrix}, \ \mathbf{F} = \begin{pmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \otimes \mathbf{v} + pl - \tau \\ (\rho E + p) \mathbf{v} - \kappa \nabla T - \tau \cdot \mathbf{v} \end{pmatrix}, \ \mathbf{s} = \begin{pmatrix} 0 \\ \rho \mathbf{g} \\ \rho(q + \mathbf{g} \cdot \mathbf{v}) \end{pmatrix}$$

convective fluxes, heat fluxes & surface forces p pressure, T temperature τ viscous stress tensor κ thermal conductivity body forces & heat sources g gravitational & electromag. forces q intern. heat sources

 \rightarrow simplified programming by representation in same generic form

 \rightarrow sufficient to develop discretization schemes for generic conservation law

General discretization techniques

Finite differences / differential form

- approximation of nodal values and nodal derivatives
- easy to derive, efficient
- essentially limited to structured meshes

Finite volumes / integral form

- approximation of cell means and integrals
- conservative by construction
- suitable for arbitrary meshes
- difficult to extend to higher order

Finite elements / weak form

- weighted residual formulation
- quite flexible and general
- suitable for arbitrary meshes

... based on the integral rather than the differential form

Integral conservation enforced for small control volumes V_i defined by computational mesh

$$ar{V} = igcup_{i=1}^{\mathcal{K}}ar{V}_i$$

Degrees of freedom: cell means

$$u_i(t) = rac{1}{|V_i|} \int_{V_i} u(\mathbf{x}, t) \, d\mathbf{x}$$

cell-centered vs. vertex-centered possibly staggered for different variables

To be specified:

- concrete definition of control volumes
- type of approximation inside these
- numerical method for evaluation of integrals and fluxes

Why the integral form?

Because this is the form directly obtained from physics.

1D scalar hyperbolic $f(u) = \frac{1}{2}u^2 \Rightarrow \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} = 0$
conservation law (Burgers equation)
 $\begin{pmatrix} 1, & x < 0, \\ 1, & x < 0, \\ \end{pmatrix}$

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0 \qquad \text{init. cond.:} \quad u_0(x) = \begin{cases} \cos(\pi x), & 0 \le x \le 1, \\ -1, & x > 1. \end{cases}$$

PDE theory tells us:

As long as the exact solution is smooth, it is constant along charactereristic curves

Why the integral form?

Because this is the form directly obtained from physics.

1D scalar hyperbolic $f(u) = \frac{1}{2}u^2 \Rightarrow \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} = 0$ conservation law
(Burgers equation) $\begin{pmatrix} 1, & x < 0, \end{cases}$

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0 \qquad \text{init. cond.:} \quad u_0(x) = \begin{cases} \cos(\pi x), & 0 \le x \le 1, \\ -1, & x > 1. \end{cases}$$

PDE theory tells us:

As long as the exact solution is smooth, it is constant along charactereristic curves

Characteristic curves are straight lines and cross \rightarrow smooth solution breaks down integral form (time integrated) still holds

Why the integral form?

Because this is the form directly obtained from physics.

1D scalar hyperbolic $f(u) = \frac{1}{2}u^2 \Rightarrow \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} = 0$ conservation law
(Burgers equation) $\begin{pmatrix} 1, & x < 0, \end{cases}$

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0 \qquad \text{init. cond.:} \quad u_0(x) = \begin{cases} \cos(\pi x), & 0 \le x \le 1, \\ -1, & x > 1. \end{cases}$$

PDE theory tells us:

As long as the exact solution is smooth, it is constant along charactereristic curves

Characteristic curves are straight lines and cross \rightarrow smooth solution breaks down integral form (time integrated) still holds It is important to ensure correct shock speed

In 1D, the FV scheme can be regarded as a FD scheme in conservative form

In 1D, the FV scheme can be regarded as a FD scheme in conservative form

On a control volume $V = [x_{i-1/2}, x_{i+1/2}]$, the exact solution fulfills

$$\begin{aligned} \frac{d}{dt} \int_{x_{i-1/2}}^{x_{i+1/2}} u \, d\mathbf{x} + \left[f(u)\right]_{x_{i-1/2}}^{x_{i+1/2}} &= 0\\ \\ \text{discretized:} \qquad \Delta x_i \frac{u_i^{n+1} - u_i^n}{\Delta t} + f(u_{i+1/2}^n) - f(u_{i-1/2}^n) &= 0 \end{aligned}$$

In 1D, the FV scheme can be regarded as a FD scheme in conservative form

On a control volume $V = [x_{i-1/2}, x_{i+1/2}]$, the exact solution fulfills

$$\begin{aligned} \frac{d}{dt} \int_{x_{i-1/2}}^{x_{i+1/2}} u \, d\mathbf{x} + [f(u)]_{x_{i-1/2}}^{x_{i+1/2}} &= 0 \\ \\ \text{discretized:} \qquad \Delta x_i \frac{u_i^{n+1} - u_i^n}{\Delta t} + f(u_{i+1/2}^n) - f(u_{i-1/2}^n) &= 0 \end{aligned}$$

flux values $f(u_{i\pm 1/2})$ depending on unknown face quantities $u_{i-1/2}, u_{i+1/2}$ \rightarrow reconstruction necessary from available data ..., $u_{i-1}, u_i, u_{i+1}, ...$

 \rightarrow Introduction of numerical flux functions f^*

$$u_i^{n+1} = u_i^n - \frac{\Delta x_i}{\Delta t} \left(f^*(u_i^n, u_{i+1}^n) - f^*(u_{i-1}^n, u_i^n) \right)$$

In 1D, the FV scheme can be regarded as a FD scheme in conservative form

On a control volume $V = [x_{i-1/2}, x_{i+1/2}]$, the exact solution fulfills

$$\begin{aligned} \frac{d}{dt} \int_{x_{i-1/2}}^{x_{i+1/2}} u \, d\mathbf{x} + [f(u)]_{x_{i-1/2}}^{x_{i+1/2}} &= 0 \\ \\ \text{discretized:} \qquad \Delta x_i \frac{u_i^{n+1} - u_i^n}{\Delta t} + f(u_{i+1/2}^n) - f(u_{i-1/2}^n) &= 0 \end{aligned}$$

flux values $f(u_{i\pm 1/2})$ depending on unknown face quantities $u_{i-1/2}, u_{i+1/2}$ \rightarrow reconstruction necessary from available data $\dots, u_{i-1}, u_i, u_{i+1}, \dots$

 \rightarrow Introduction of numerical flux functions f^* The heart of FV schemes

$$u_i^{n+1} = u_i^n - \frac{\Delta x_i}{\Delta t} \left(f^*(u_i^n, u_{i+1}^n) - f^*(u_{i-1}^n, u_i^n) \right)$$

Classical numerical flux functions

linked to Riemann problems & characteristic directions

Classical numerical flux functions

linked to Riemann problems & characteristic directions

Upwind methods

Scalar linear equation a > 0 $(\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0)$

$$u_i^{n+1} = u_i^n - \frac{\Delta x}{\Delta t} \left(\frac{\partial u_i^n}{\partial u_{i-1}^n} \right) \qquad (f^*(u_i, u_{i+1}) = \partial u_i)$$

 $\label{eq:Linear system of equations} \quad \rightarrow \mathbf{f}^*(\mathbf{u}_i,\mathbf{u}_{i+1}) = \mathbf{A}^+\mathbf{u}_i + \mathbf{A}^-\mathbf{u}_{i+1}$

$$\mathbf{u}_i^{n+1} = \mathbf{u}_i^n - \frac{\Delta t}{\Delta x} \left(\mathbf{A}^+ (\mathbf{u}_i^n - \mathbf{u}_{i-1}^n) + \mathbf{A}^- (\mathbf{u}_{i+1}^n - \mathbf{u}_i^n) \right)$$

Nonlinear systems \rightarrow Flux vector splitting

$$f(u) = f^{+}(u) + f^{-}(u) \Rightarrow f^{*}(u_{i}, u_{i+1}) = f^{+}(u_{i}) + f^{-}(u_{i+1})$$

Steger & Warming, van Leer, AUSM and variants

Roe scheme

exact solution to linear Riemann problem

Roe scheme

exact solution to linear Riemann problem

Properties of Roe matrix \mathbf{A}_{LR}

- $A_{LR} \approx A(u) = Df(u)$
- $A_{LR}(u, u) = A(u)$
- A_{LR} is diagonalizable
- $f(u_R) f(u_L) = A_{LR}(u_R u_L)$ (mean value property)

entropy-fix needed

Roe scheme

exact solution to linear Riemann problem

HLL scheme

Godunov-type scheme

Properties of Roe matrix \mathbf{A}_{LR}

- $A_{LR} \approx A(u) = Df(u)$
- $A_{LR}(u, u) = A(u)$
- A_{LR} is diagonalizable
- $f(u_R) f(u_L) = A_{LR}(u_R u_L)$ (mean value property)

entropy-fix needed

Roe scheme

exact solution to linear Riemann problem

HLL scheme

Godunov-type scheme

Properties of Roe matrix \mathbf{A}_{LR}

- $A_{LR} \approx A(u) = Df(u)$
- $A_{LR}(u, u) = A(u)$
- A_{LR} is diagonalizable
- $f(u_R) f(u_L) = A_{LR}(u_R u_L)$ (mean value property)

entropy-fix needed

- approximates only one intermediate state
- based on integral conservation law

What about higher order schemes?

Challenges posed by hyperbolic conservation laws

Oscillations of approximate solution

- Computation of discontinuous solutions (shocks)
- Unphysical oscillations
- Needs additional numerical dissipation

Difficulties regarding discontinuous solutions

Example: Burgers equation

$$\frac{\partial u}{\partial t} + u \cdot \frac{\partial u}{\partial x} = 0, \qquad u(x,0) = \sin(x)$$

Difficulties regarding discontinuous solutions

Example: Burgers equation

$$\frac{\partial u}{\partial t} + u \cdot \frac{\partial u}{\partial x} = 0, \qquad u(x,0) = \sin(x)$$

Goal: Controll oscillations

FV schemes with linear reconstruction - modify left and right states

$$u_i^{n+1} = u_i^n + \frac{\Delta x_i}{\Delta t} \left(f^*(u_i^n, u_{i+1}^n) - f^*(u_{i-1}^n, u_i^n) \right) = 0$$

FV schemes with linear reconstruction - modify left and right states

$$u_i^{n+1} = u_i^n + \frac{\Delta x_i}{\Delta t} \left(f^*(u_i^n, u_{i+1}^n) - f^*(u_{i-1}^n, u_i^n) \right) = 0$$

- linear reconstruction within cells $u(x) = u_i + s(x - x_i)$
- preserve integral means
- how to compute slopes *s* ?
- prevent creation of new max/min

FV schemes with linear reconstruction - modify left and right states

$$u_i^{n+1} = u_i^n + \frac{\Delta x_i}{\Delta t} \left(f^*(u_i^n, u_{i+1}^n) - f^*(u_{i-1}^n, u_i^n) \right) = 0$$

- linear reconstruction within cells $u(x) = u_i + s(x - x_i)$
- preserve integral means
- how to compute slopes *s* ?
- prevent creation of new max/min

enforce TVD property (relates to properties of exact solution)

$$\sum_{i} |u_{i+1}^{n+1} - u_{i}^{n+1}| \le \sum_{i} |u_{i+1}^{n} - u_{i}^{n}|$$

sufficient condition

$$0 \leq \left\{\frac{\Delta x \, s_i}{u_i - u_{i-1}}, \frac{\Delta x \, s_i}{u_{i+1} - u_i}\right\} \leq 2$$

FV schemes with linear reconstruction - modify left and right states

$$u_i^{n+1} = u_i^n + \frac{\Delta x_i}{\Delta t} \left(f^*(u_i^n, u_{i+1}^n) - f^*(u_{i-1}^n, u_i^n) \right) = 0$$

- linear reconstruction within cells $u(x) = u_i + s(x - x_i)$
- preserve integral means
- how to compute slopes *s* ?
- prevent creation of new max/min

enforce TVD property (relates to properties of exact solution)

$$\sum_{i} |u_{i+1}^{n+1} - u_{i}^{n+1}| \le \sum_{i} |u_{i+1}^{n} - u_{i}^{n}|$$

sufficient condition

$$0 \leq \left\{\frac{\Delta x \, s_i}{u_i - u_{i-1}}, \frac{\Delta x \, s_i}{u_{i+1} - u_i}\right\} \leq 2$$

Typical example:

$$s_{i} = \frac{1}{\Delta x} \operatorname{minmod}(u_{i+1} - u_{i}, u_{i} - u_{i-1}),$$

$$\operatorname{minmod}(a, b) = \begin{cases} a & |a| < |b|, ab > 0 \\ b & |a| \ge |b|, ab > 0 \\ 0 & \operatorname{otherwise} \end{cases}$$

The ENO reconstruction

ENO stands for essentially non-oscillatory

- higher order reconstruction via interpolation
- adaptively choose *stencil*
- avoid interpolation across shocks

The ENO reconstruction

ENO stands for essentially non-oscillatory

- higher order reconstruction via interpolation
- adaptively choose *stencil*
- avoid interpolation across shocks

ENO approach:

- successive increase of polynomial degree via Newton interpolation
- compare divided differences obtained by left or right extension

The ENO reconstruction

ENO stands for essentially non-oscillatory

- higher order reconstruction via interpolation
- adaptively choose stencil
- avoid interpolation across shocks

ENO approach:

- successive increase of polynomial degree via Newton interpolation
- compare divided differences obtained by left or right extension

ENO properties:

- constructs only one reconstruction polynomial
- prone to round off errors

The WENO reconstruction

WENO stands for weighted essentially non-oscillatory

- A priori: choice of main (central) stencil as well as secondary stencils
- Compute polynomial reconstruction on *each* stencil, conserve integral means
- Compute weights depending on oscillatory behaviour of reconstruction
- Evaluate weighted sum of reconstruction polynomials

The WENO reconstruction

WENO stands for weighted essentially non-oscillatory

- A priori: choice of main (central) stencil as well as secondary stencils
- Compute polynomial reconstruction on *each* stencil, conserve integral means
- Compute weights depending on oscillatory behaviour of reconstruction
- Evaluate weighted sum of reconstruction polynomials

WENO properties:

- The higher the discretization order the higher the number of required neighbor cells
- Unstructured grids: difficult to construct stencils
- High demand on resources (CPU time / memory requirement)
From Finite Volumes ...

.. to Discontinuous Galerkin

Discontinuous Galerkin schemes

discontinuous approximate solutions

modern space discretization

$$\frac{d}{dt}\int_{V_i}\mathbf{u}_h\,\Phi\,d\mathbf{x}+\int_{\partial V_i}\mathbf{F}^*(\mathbf{u}_h^-,\mathbf{u}_h^+,\mathbf{n})\,\Phi\,d\sigma-\int_{V_i}\mathbf{F}(\mathbf{u}_h)\cdot\nabla\Phi\,d\mathbf{x}=\int_{V_i}\mathbf{q}_h\,\Phi\,d\mathbf{x}$$

 $\begin{array}{ccc} \mathsf{FV}: & & \mathsf{DG}: \\ \Phi = \Phi_0 & & \Phi = \Phi_0, \Phi_1, \dots, \Phi_N \end{array}$

 \rightarrow Closer link to given physical equations

- High accuracy & flexibility
- Compact domains of dependance
- Highly adapted to computations in parallel

High resolution of DG scheme

Double Mach reflection: Shock hitting fixed wall

Density distribution: FV vs. DG scheme

Hyperbolic conservation law in 2D

$$rac{\partial}{\partial t} \mathbf{u}(\mathbf{x},t) +
abla \cdot \mathbf{F}(\mathbf{u}(\mathbf{x},t)) = 0, \qquad (\mathbf{x},t) \in \Omega imes \mathbb{R}^+$$

Initial conditions:

 $\mathbf{u}(\mathbf{x},0)=\mathbf{u}_0(\mathbf{x})$ Boundary conditions: inflow/outflow, reflecting walls

Hyperbolic conservation law in 2D

$$rac{\partial}{\partial t} \mathbf{u}(\mathbf{x},t) +
abla \cdot \mathbf{F}(\mathbf{u}(\mathbf{x},t)) = 0, \qquad (\mathbf{x},t) \in \Omega imes \mathbb{R}^+$$

Approximation $\mathbf{u}_{h,N}(\mathbf{x},t)$: piecewise polynomial in \mathbf{x} , degree $\leq N$

 $u_{h,N}(\cdot,t)$

Multiplication by test functions $\Phi \in \mathcal{P}^{N}(\tau_{i})$, Integration over τ_{i}

$$\frac{d}{dt}\int_{\tau_i} \mathbf{u}\,\Phi\,d\mathbf{x} + \int_{\tau_i} \nabla\cdot\mathbf{F}(\mathbf{u})\,\Phi\,d\mathbf{x} = 0$$

Use divergence theorem

$$rac{d}{dt}\int_{ au_i} \mathbf{u}\,\Phi\,d\mathbf{x} + \int_{\partial au_i} \mathbf{F}(\mathbf{u})\cdot\mathbf{n}\,\Phi\,d\sigma - \int_{ au_i} \mathbf{F}(\mathbf{u})\cdot
abla\Phi\,d\mathbf{x} = 0$$

Multiplication by test functions $\Phi \in \mathcal{P}^{N}(\tau_{i})$, Integration over τ_{i}

$$\frac{d}{dt}\int_{\tau_i} \mathbf{u}\,\Phi\,d\mathbf{x} + \int_{\tau_i} \nabla\cdot\mathbf{F}(\mathbf{u})\,\Phi\,d\mathbf{x} = 0$$

Use divergence theorem

$$\frac{d}{dt} \int_{\tau_i} \mathbf{u} \Phi \, d\mathbf{x} + \int_{\partial \tau_i} \mathbf{F}(\mathbf{u}) \cdot \mathbf{n} \, \Phi \, d\sigma - \int_{\tau_i} \mathbf{F}(\mathbf{u}) \cdot \nabla \Phi \, d\mathbf{x} = 0$$

$$\mathbf{u}_{h,N} \qquad \mathbf{F}^*(\mathbf{u}_{h,N}^-, \mathbf{u}_{h,N}^+, \mathbf{n}) \qquad \mathbf{F}(\mathbf{u}_{h,N})$$

Multiplication by test functions $\Phi \in \mathcal{P}^{N}(\tau_{i})$, Integration over τ_{i}

$$\frac{d}{dt}\int_{\tau_i} \mathbf{u}\,\Phi\,d\mathbf{x} + \int_{\tau_i} \nabla\cdot\mathbf{F}(\mathbf{u})\,\Phi\,d\mathbf{x} = 0$$

Use divergence theorem

$$\frac{d}{dt} \int_{\tau_i} \underbrace{\mathbf{u} \, \Phi \, d\mathbf{x}}_{\tau_i} + \int_{\partial \tau_i} \mathbf{F}(\mathbf{u}) \cdot \mathbf{n} \, \Phi \, d\sigma - \int_{\tau_i} \mathbf{F}(\mathbf{u}) \cdot \nabla \Phi \, d\mathbf{x} = 0$$
$$\underbrace{\mathbf{u}_{h,N}}_{\mathbf{h},N} = \mathbf{F}^*(\mathbf{u}_{h,N}^-, \mathbf{u}_{h,N}^+, \mathbf{n}) = \mathbf{F}(\mathbf{u}_{h,N})$$

Use orthogonal polynomial basis $\{\Phi_1, \Phi_2, \dots, \Phi_{q(N)}\}$ of $\mathcal{P}^N(\tau_i)$

$$|\mathbf{u}_{h,N}|_{\tau_i}(\mathbf{x},t) = \sum_{k=1}^{q(N)} \hat{\mathbf{u}}_k^i(t) \Phi_k(\mathbf{x}), \qquad q(N) = (N+1)(N+2)/2$$

Time Evolution of coefficients

$$\frac{d}{dt}\hat{\mathbf{u}}_{k}^{i} = \left(-\int_{\partial\tau_{i}}\mathbf{F}^{*}(\mathbf{u}_{h,N}^{-},\mathbf{u}_{h,N}^{+},\mathbf{n})\Phi_{k}d\sigma + \int_{\tau_{i}}\mathbf{F}(\mathbf{u}_{h,N})\cdot\nabla\Phi_{k}d\mathbf{x}\right)/\|\Phi_{k}\|_{L^{2}}^{2}$$

Quadrature rules

Time Evolution of coefficients

$$\frac{d}{dt}\hat{\mathbf{u}}_{k}^{i} = \left(-\int_{\partial\tau_{i}}\mathbf{F}^{*}(\mathbf{u}_{h,N}^{-},\mathbf{u}_{h,N}^{+},\mathbf{n})\Phi_{k}d\sigma + \int_{\tau_{i}}\mathbf{F}(\mathbf{u}_{h,N})\cdot\nabla\Phi_{k}d\mathbf{x}\right)/\|\Phi_{k}\|_{L^{2}}^{2}$$
Quadrature rules

 \rightarrow System of ODEs for coefficients $\hat{\mathbf{u}}_k^i$

$$\frac{d}{dt}\hat{\mathbf{U}}(t) = \mathcal{L}_{h,N}\left(\hat{\mathbf{U}}(t),t\right), \qquad \hat{\mathbf{U}} = \begin{bmatrix}\hat{\mathbf{u}}_{k}^{i}\end{bmatrix}_{\substack{k=1,...,q(N),\\i=1,...,\#\mathcal{T}^{h}}}$$

Time Evolution of coefficients

$$\frac{d}{dt}\hat{\mathbf{u}}_{k}^{i} = \left(-\int_{\partial\tau_{i}}\mathbf{F}^{*}(\mathbf{u}_{h,N}^{-},\mathbf{u}_{h,N}^{+},\mathbf{n})\Phi_{k}d\sigma + \int_{\tau_{i}}\mathbf{F}(\mathbf{u}_{h,N})\cdot\nabla\Phi_{k}d\mathbf{x}\right)/\|\Phi_{k}\|_{L^{2}}^{2}$$
Quadrature rules

ightarrow System of ODEs for coefficients $\hat{\mathbf{u}}_k^i$

$$rac{d}{dt} \hat{\mathbf{U}}(t) = \mathcal{L}_{h,N}\left(\hat{\mathbf{U}}(t),t
ight), \qquad \hat{\mathbf{U}} = \left[\hat{\mathbf{u}}_{k}^{i}
ight]_{k=1,...,q(N),i=1,...,\#\mathcal{T}^{h}}$$

 $\rightarrow~$ e.g. Runge Kutta time integration

Cockburn and Shu (1989-91, 1998)

Time Evolution of coefficients

$$\frac{d}{dt}\hat{\mathbf{u}}_{k}^{i} = \left(-\int_{\partial\tau_{i}}\mathbf{F}^{*}(\mathbf{u}_{h,N}^{-},\mathbf{u}_{h,N}^{+},\mathbf{n})\Phi_{k}d\sigma + \int_{\tau_{i}}\mathbf{F}(\mathbf{u}_{h,N})\cdot\nabla\Phi_{k}d\mathbf{x}\right)/\|\Phi_{k}\|_{L^{2}}^{2}$$
Quadrature rules

 \rightarrow System of ODEs for coefficients $\hat{\mathbf{u}}_k^i$

$$rac{d}{dt}\hat{\mathbf{U}}(t) = \mathcal{L}_{h,N}\left(\hat{\mathbf{U}}(t),t
ight), \qquad \hat{\mathbf{U}} = \begin{bmatrix}\hat{\mathbf{u}}_k^i\end{bmatrix}_{\substack{k=1,...,q(N),\ i=1,...,\#\mathcal{T}^h}}$$

 $\rightarrow~$ e.g. Runge Kutta time integration

Cockburn and Shu (1989-91, 1998)

Allows easy incorporation of modal filters Meister, Ortleb, Sonar '12

Damping strategies for DG

Modify approximate solution

Modify equation

Explicit dissipation

Cockburn, Shu '89 Krivodonova '07

(H)WENO-Reconstruction

 Use stencil data - Weighted interpol. polynomials

Qiu,Shu '04/05

$$rac{\partial \mathbf{u}}{\partial t} +
abla \cdot \mathcal{F}(\mathbf{u}) = \epsilon \Delta \mathbf{u}$$

 In conservation law or discretization – Time step $\mathcal{O}(h^2)$

Jaffre, Johnson, Szepessy '95 Persson.Peraire '06 Feistauer.Kučera '07

Damping for spectral methods

1D periodic case:

Fourier method:

$$\frac{\partial}{\partial t}u + \frac{\partial}{\partial x}f(u) = 0, \quad x \in [-\pi,\pi]$$
$$\frac{\partial}{\partial t}u_N + \frac{\partial}{\partial x}\mathcal{P}_N f(u_N) = 0$$
$$u_N(x,t) = \sum_{|k| \le N} \hat{u}_k(t)e^{ikx}$$

Modal Filtering Modify coefficients at times t^n $u_N^{\sigma}(x,t^n) = \sum_{|k| \le N} \sigma\left(\frac{|k|}{N}\right) \hat{u}_k^n e^{ikx}$

Gottlieb, Lustman, Orzag '81

Damping for spectral methods

1D periodic case:

$$\frac{\partial}{\partial t}u + \frac{\partial}{\partial x}f(u) = 0, \quad x \in [-\pi,\pi]$$

 $\frac{\partial}{\partial t}u_N + \frac{\partial}{\partial x}\mathcal{P}_N f(u_N) = 0$ $u_N(x,t) = \sum_{|k| \le N} \hat{u}_k(t)e^{ikx}$

Modal Filtering

Modify coefficients at times t^n

$$u_N^{\sigma}(x,t^n) = \sum_{|k| \le N} \sigma\left(\frac{|k|}{N}\right) \hat{u}_k^n e^{ikx}$$

Gottlieb, Lustman, Orzag '81

Spectral viscosity Add special viscosity term $\epsilon_N (-1)^{p+1} \frac{\partial^p}{\partial x^p} \Big[Q_N \frac{\partial^p u_N}{\partial x^p} \Big]$

Tadmor '89

Damping for spectral methods

1D periodic case:

Fourier method:

$$\frac{\partial}{\partial t}u + \frac{\partial}{\partial x}f(u) = 0, \quad x \in [-\pi, \pi]$$
$$\frac{\partial}{\partial t}u_N + \frac{\partial}{\partial x}\mathcal{P}_N f(u_N) = 0$$

$$u_N(x,t) = \sum_{|k| \leq N} \hat{u}_k(t) e^{ikx}$$

Modal FilteringSpectral viscosityModify coefficients at times t^n Add special viscosity term $u_N^{\sigma}(x,t^n) = \sum_{|k| \le N} \sigma\left(\frac{|k|}{N}\right) \hat{u}_k^n e^{ikx}$ $\underset{k \to 0}{\underset{k \to 0}{\underset{k \to 0}{\overset{k \to 0}{\underset{k \to 0}{\overset{k \to 0}}}}{\overset{k \to 0}{\overset{k \to 0$

Simple implementation

Convergence theory, Parameter choice

Initial conditions

$$(\rho, v_1, v_2, p) = \begin{cases} (3.857143, 2.629369, 0, 10.333333) & \text{if } x < -4 \\ (1 + 0.2 \cdot \sin(5x), 0, 0, 1) & \text{if } x \ge -4 \end{cases}$$

DG with modal filtering

approximate density solution (t = 1.8)

Discretization: N = 5, K = 1250

Further classical test cases

shock-vortex interaction

pressure N = 7, K = 2122

Finite Volumes & Discontinuous Galerkin and beyond?

1 The Finite Volume Method

2 The Discontinuous Galerkin Scheme

3 SBP Operators & Flux Reconstruction

4 Current High Performance DG / FR Schemes

- Finite Volume Method
- Discontinuous Galerkin Method Cockburn/Shu '89
- Spectral Difference Method Kopriva/Kolias '96, Liu et al. '06, Wang et al. '07
- Flux Reconstruction Method Huynh '11
- VCJH Energy Stable FR Method Vincent et al. '10
- SBP-SAT schemes Originally: Kreiss/Scherer '74

The 1D DG scheme

Scalar hyperbolic conservation law in 1D

$$\frac{\partial}{\partial t}u(x,t)+\frac{\partial}{\partial x}f(u(x,t))=0, \quad t>0, x\in\Omega=[\alpha,\beta]$$

The 1D DG scheme

Scalar hyperbolic conservation law in 1D

$$\frac{\partial}{\partial t}u(x,t)+\frac{\partial}{\partial x}f(u(x,t))=0, \quad t>0, x\in\Omega=[\alpha,\beta]$$

$$\begin{aligned} & \text{Subdivision of } \Omega \text{ in} \\ & \Omega = \bigcup_{i} \Omega_{i} = \bigcup_{i} [x_{i}, x_{i+1}] \\ & u_{h}^{i}(x, t) = \sum_{k=1}^{N+1} u_{i}^{i}(t) \Phi_{i}^{i}(x) \\ & \underline{u}_{h}^{i}(x, t) = \sum_{k=1}^{N+1} u_{i}^{j}(t) \Phi_{i}^{j}(x) \\ & \underline{u}^{i} = (u_{1}^{i}, \dots, u_{p+1}^{i})^{T} \\ \end{aligned}$$
 solution vector

The DG scheme in strong form

$$\int_{\Omega_{i}} \frac{\partial u_{h}^{i}}{\partial t} \Phi_{k}^{i} dx + \int_{\Omega_{i}} \frac{\partial f_{h}^{i}}{\partial x} \Phi_{k}^{i} dx = [f_{i-1,i}^{*} - f_{h}^{i}(x_{i})] \Phi_{k}^{i}(x_{i}) - [f_{i,i+1}^{*} - f_{h}^{i}(x_{i+1})] \Phi_{k}^{i}(x_{i+1})$$

The 1D DG scheme

Scalar hyperbolic conservation law in 1D

$$\frac{\partial}{\partial t}u(x,t)+\frac{\partial}{\partial x}f(u(x,t))=0, \quad t>0, x\in\Omega=[\alpha,\beta]$$

$$\begin{aligned} & \text{Subdivision of } \Omega \text{ in} \\ & \Omega = \bigcup_{i} \Omega_{i} = \bigcup_{i} [x_{i}, x_{i+1}] \\ & u_{h}^{i}(x, t) = \sum_{k=1}^{N+1} u_{i}^{i}(t) \Phi_{i}^{i}(x) \\ & \underline{u}_{h}^{i}(x, t) = \sum_{k=1}^{N+1} u_{i}^{j}(t) \Phi_{i}^{j}(x) \\ & \underline{u}^{i} = (u_{1}^{i}, \dots, u_{p+1}^{i})^{T} \\ \end{aligned}$$
 solution vector

The DG scheme in strong form

$$\int_{\Omega_{i}} \frac{\partial u_{h}^{i}}{\partial t} \Phi_{k}^{i} dx + \int_{\Omega_{i}} \frac{\partial f_{h}^{i}}{\partial x} \Phi_{k}^{i} dx = [f_{i-1,i}^{*} - f_{h}^{i}(x_{i})] \Phi_{k}^{i}(x_{i}) - [f_{i,i+1}^{*} - f_{h}^{i}(x_{i+1})] \Phi_{k}^{i}(x_{i+1})$$

equivalent to

$$\underline{\underline{M}}^{i}\frac{d\underline{u}^{i}}{dt} + \underline{\underline{S}}^{i}\underline{f}^{i} = [(f_{h} - f^{*})\underline{\Phi}^{i}]_{x_{i}}^{x_{i+1}}$$

$$\begin{split} M_{kl}^{i} &= \int_{\Omega_{i}} \Phi_{k}^{i} \Phi_{l}^{j} dx \\ S_{kl}^{i} &= \int_{\Omega_{i}} \Phi_{k}^{i} \frac{\partial}{\partial x} \Phi_{l}^{j} dx \\ \underline{\Phi}^{i} &= (\Phi_{1}^{i}, \dots, \Phi_{p+1}^{i})^{T} \end{split}$$

SBP schemes

Generalized definition of 1D SBP scheme

Del Rey Fernández et al. '14

• $\underline{\underline{M}}$ symmetric positive definite

•
$$\underline{\underline{D}} := \underline{\underline{M}}^{-1} \underline{\underline{S}}$$
 approximates $\frac{\partial}{\partial \lambda}$

•
$$\underline{\underline{S}} + \underline{\underline{S}}^T = \underline{\underline{B}}$$
 with $(\underline{x}^{\mu})^T \underline{\underline{B}} \underline{x}^{\nu} = (x_{i+1})^{\mu+\nu} - (x_i)^{\mu+\nu}$
SBP mimics integration by parts

SBP schemes

Generalized definition of 1D SBP scheme

Del Rey Fernández et al. '14

• $\underline{\underline{M}}$ symmetric positive definite

•
$$\underline{\underline{D}} := \underline{\underline{M}}^{-1} \underline{\underline{S}}$$
 approximates $\frac{\partial}{\partial x}$

•
$$\underline{\underline{S}} + \underline{\underline{S}}^T = \underline{\underline{B}}$$
 with $(\underline{x}^{\mu})^T \underline{\underline{B}} \underline{x}^{\nu} = (x_{i+1})^{\mu+\nu} - (x_i)^{\mu+\nu}$
SBP mimics integration by parts

fulfilled by DG scheme

$$\underline{\underline{M}}\frac{d\underline{u}}{dt} + \underline{\underline{S}}\underline{f} = [(f_h - f^*)\underline{\Phi}]_{x_i}^{x_{i+1}} \qquad \begin{array}{c} S_{kl} = \\ B_{kl} = \\ \end{array}$$

$$M_{kl} = \int_{\Omega_i} \Phi_k \Phi_l dx$$

$$S_{kl} = \int_{\Omega_i} \Phi_k \frac{\partial}{\partial x} \Phi_l dx$$

$$B_{kl} = [\Phi_k \Phi_l]_{x_i}^{x_{i+1}}$$

Gauss-Lobatto (GLL) and Gauss-Legendre (GL) DG schemes:

$$\underline{\underline{B}}_{GLL} = \text{diag}\{-1, 0, \dots, 0, 1\}, \\ \underline{\underline{B}}_{GL,N=1} = \text{diag}\{-\sqrt{3}, \sqrt{3}\}, \quad \underline{\underline{B}}_{GL,N=2} = \begin{pmatrix} -\frac{1}{\xi^3} & \frac{1-\xi^2}{\xi^3} & 0\\ \frac{1-\xi^2}{\xi^3} & 0 & \frac{\xi^2-1}{\xi^3}\\ 0 & \frac{\xi^2-1}{\xi^3} & \frac{1}{\xi^3} \end{pmatrix}, \ \xi = \sqrt{\frac{3}{5}}$$

Provable linear stability Energy stability w.r.t. $\frac{1}{2} \|\underline{u}\|_{\underline{M}}^2$

Energy stability w.r.t. $\frac{1}{2} \|\underline{u}\|_{\underline{M}}^2$

Relation to quadrature formulae Corresponding QF preserve certain properties of functional e.g. discrete divergence theorem Hicken/Zingg '13

Energy stability w.r.t. $\frac{1}{2} \|\underline{u}\|_{\underline{M}}^2$

Relation to quadrature formulae Corresponding QF preserve certain properties of functional e.g. discrete divergence theorem Hicken/Zingg '13

Correct discretization of split form conservation laws

- split forms (e.g. skew-symmetric)
 - $\bullet \ \to {\sf Better \ control \ of \ oscillations}$
 - preservation of secondary quantities, e.g. \rightarrow kinetic energy

Energy stability w.r.t. $\frac{1}{2} \|\underline{u}\|_{\underline{M}}^2$

Relation to quadrature formulae Corresponding QF preserve certain properties of functional e.g. discrete divergence theorem Hicken/Zingg '13

Correct discretization of split form conservation laws

- split forms (e.g. skew-symmetric)
 - $\bullet \ \to {\sf Better \ control \ of \ oscillations}$
 - preservation of secondary quantities, e.g. \rightarrow kinetic energy
- possible lack of discrete conservation

Energy stability w.r.t. $\frac{1}{2} \|\underline{u}\|_{\underline{M}}^2$

Relation to quadrature formulae Corresponding QF preserve certain properties of functional e.g. discrete divergence theorem Hicken/Zingg '13

Correct discretization of split form conservation laws

- split forms (e.g. skew-symmetric)
 - $\bullet \ \to {\sf Better \ control \ of \ oscillations}$
 - preservation of secondary quantities, e.g. \rightarrow kinetic energy
- possible lack of discrete conservation
- SBP schemes: equivalent telescoping form Fisher et al. '12
 - \rightarrow if convergent, then weak solution (Lax-Wendroff)

Discontinuous Galerkin

 \leftrightarrow

Energy Stable Flux Reconstruction (VCJH)

Discontinuous Galerkin

 \leftrightarrow

Energy Stable Flux Reconstruction (VCJH)

These methods meet as SBP schemes!

Spectral difference and flux reconstruction schemes

The SD scheme [Wang et al. '07]

Construction of f^{SD}

$$\frac{\partial u}{\partial t} + \frac{\partial f^{SD}}{\partial x} = 0$$

Spectral difference and flux reconstruction schemes

The SD scheme [Wang et al. '07]

Construction of f^{SD}

Generalized by FR scheme [Huynh '11]

$$f^{FR} = f_h^i + \underbrace{[f_{i-1,i}^* - f_h^i(x_i)]}_{f_{CL}} g_L + \underbrace{[f_{i,i+1}^* - f_h^i(x_{i+1})]}_{f_{CR}} g_R$$

where $g_L, g_R \in P^{N+1}$ with $\begin{cases} g_L(x_i) = 1 & g_R(x_i) = 0 \\ g_L(x_{i+1}) = 0 & g_R(x_{i+1}) = 1 \end{cases}$
DG for g_L, g_R right & left Radau polynomials

Spectral difference and flux reconstruction schemes

The SD scheme [Wang et al. '07]

Construction of f^{SD}

Generalized by FR scheme [Huynh '11]

$$f^{FR} = f_h^i + \underbrace{[f_{i-1,i}^* - f_h^i(x_i)]}_{f_{CL}} g_L + \underbrace{[f_{i,i+1}^* - f_h^i(x_{i+1})]}_{g_R} g_R$$

where $g_L, g_R \in P^{N+1}$ with $\begin{cases} g_L(x_i) = 1 & g_R(x_i) = 0 \\ g_L(x_{i+1}) = 0 & g_R(x_{i+1}) = 1 \end{cases}$
DG for g_L, g_R right & left Radau polynomials

in matrix-vector form [Allaneau/Jameson '11]

 expand u_h, f_h and g'_L, g'_R in same basis {Φ_k}

• multiply by
$$\underline{\underline{M}}$$

with $M_{kl} = \int_{\Omega_l} \Phi_k \Phi_l dx$

$$\underline{\underline{M}} \frac{d\underline{u}}{dt} + \underline{\underline{S}} \underline{f} = -f_{CL} \underline{\underline{M}} \underline{g}'_{L} - f_{CR} \underline{\underline{M}} \underline{g}'_{R}$$
Spectral difference and flux reconstruction schemes

The SD scheme [Wang et al. '07]

Construction of f^{SD}

Generalized by FR scheme [Huynh '11]

$$f^{FR} = f_h^i + \underbrace{[f_{i-1,i}^* - f_h^i(x_i)]}_{f_{CL}} g_L + \underbrace{[f_{i,i+1}^* - f_h^i(x_{i+1})]}_{g_R} g_R$$

where $g_L, g_R \in P^{N+1}$ with $\begin{cases} g_L(x_i) = 1 & g_R(x_i) = 0 \\ g_L(x_{i+1}) = 0 & g_R(x_{i+1}) = 1 \end{cases}$
DG for g_L, g_R right & left Radau polynomials

in matrix-vector form [Allaneau/Jameson '11]

- expand u_h, f_h and g'_L, g'_R in same basis {Φ_k}
- multiply by $\underline{\underline{M}}$ with $M_{kl} = \int_{\Omega_l} \Phi_k \Phi_l dx$

$$\underline{\underline{M}} \frac{\underline{d}\underline{u}}{dt} + \underline{\underline{S}} \underline{f} = -f_{CL} \underline{\underline{M}} \underline{g}'_{L} - f_{CR} \underline{\underline{M}} \underline{g}'_{R}$$

$$\left[\frac{\underline{d}\underline{u}}{dt} + \underline{\underline{D}} \underline{f} = -f_{CL} \underline{g}'_{L} - f_{CR} \underline{g}'_{R}, \ \underline{\underline{D}} = \underline{\underline{M}}^{-1} \underline{\underline{S}} \right]$$

Reformulate

$$\underline{\underline{M}}\frac{d\underline{\underline{u}}}{dt} + \underline{\underline{S}}\underline{f} = -f_{CL}\underline{\underline{M}}\underline{\underline{g}}_{L}' - f_{CR}\underline{\underline{M}}\underline{\underline{g}}_{R}' \qquad f_{CR} = f_{i,i+1}^{*} - f_{h}^{i}(x_{i+1})$$

ci (

c *

Reformulate

$$\underline{\underline{M}}_{CL} = I_{i-1,i} - I_{h}(X_{i})$$

$$\underline{\underline{M}}_{CR} = \frac{d\underline{u}}{dt} + \underline{\underline{S}}_{L} = -f_{CL} \underline{\underline{M}} \underline{\underline{g}}_{L}' - f_{CR} \underline{\underline{M}} \underline{\underline{g}}_{R}' \qquad f_{CR} = f_{i,i+1}^{*} - f_{h}^{i}(X_{i+1})$$
As
$$\underline{\underline{M}} \underline{\underline{g}}' = \int_{\Omega_{i}} g' \underline{\Phi} dx = [\underline{g} \underline{\Phi}]_{X_{i}}^{X_{i+1}} - \int_{\Omega_{i}} \underline{g} \underline{\Phi}' dx \quad (\underline{g}' \text{ is representation of } g')$$

ci ()

c*

Reformulate

$$\underline{\underline{M}} \frac{d\underline{u}}{dt} + \underline{\underline{S}} \underline{f} = -f_{CL} \underline{\underline{M}} \underline{g}'_{L} - f_{CR} \underline{\underline{M}} \underline{g}'_{R} \qquad f_{CR} = f_{i,i+1}^{*} - f_{h}^{i}(x_{i+1})$$
As
$$\underline{\underline{M}} \underline{g}' = \int_{\Omega_{i}} g' \underline{\Phi} dx = [\underline{g} \underline{\Phi}]_{x_{i}}^{x_{i+1}} - \int_{\Omega_{i}} \underline{g} \underline{\Phi}' dx \quad (\underline{g}' \text{ is representation of } g')$$

we have (as $g_R(x_i) = g_L(x_{i+1}) = 0$)

$$RHS_{FR} = \underbrace{f_{CL}\underline{\Phi}(x_i) - f_{CR}\underline{\Phi}(x_{i+1})}_{RHS_{DG}} + \underbrace{\int_{\Omega_i} (f_{CL}g_L + f_{CR}g_R)\underline{\Phi}' dx}_{\Omega_i + 1}$$

Deviation from DG

 $f_{-} = f^* = f^i(x_i)$

Reformulate

$$\underline{\underline{M}} \frac{d\underline{u}}{dt} + \underline{\underline{S}} \underline{f} = -f_{CL} \underline{\underline{M}} \underline{g}'_{L} - f_{CR} \underline{\underline{M}} \underline{g}'_{R} \qquad f_{CR} = f^{*}_{i,i+1} - f^{*}_{h}(x_{i+1})$$
As
$$\underline{\underline{M}} \underline{g}' = \int_{\Omega_{i}} g' \underline{\Phi} dx = [\underline{g} \underline{\Phi}]^{x_{i+1}}_{x_{i}} - \int_{\Omega_{i}} \underline{g} \underline{\Phi}' dx \quad (\underline{g}' \text{ is representation of } g')$$

 $f_{ci} = f_i^* \cdot \cdot \cdot = f_i^j(\mathbf{x})$

we have (as $g_R(x_i) = g_L(x_{i+1}) = 0$)

$$RHS_{FR} = \underbrace{f_{CL}\Phi(x_i) - f_{CR}\Phi(x_{i+1})}_{RHS_{DG}} + \underbrace{\int_{\Omega_i} (f_{CL}g_L + f_{CR}g_R) \Phi' dx}_{\text{Deviation from DG}}$$

 \Rightarrow Two equivalent formulations for FR scheme:

$$\underline{\underline{M}} \frac{d\underline{u}}{dt} + \underline{\underline{S}} \underline{f} = RHS_{DG} + \int_{\Omega_i} (f_{CL}g_L + f_{CR}g_R) \underline{\Phi}' dx$$
$$\frac{d\underline{u}}{dt} + \underline{\underline{D}} \underline{f} = -f_{CL} \underline{g}'_L - f_{CR} \underline{g}'_R$$

Derivation of energy stable FR schemes:

$$\underline{\underline{M}}\frac{d\underline{u}}{dt} + \underline{\underline{S}}\underline{f} = RHS_{DG} + \int_{\Omega_i} (f_{CL}g_L + f_{CR}g_R) \underline{\Phi}' dx$$
$$\underline{\underline{K}}\frac{d\underline{u}}{dt} + \underline{\underline{K}}\underline{\underline{D}}\underline{f} = -f_{CL}\underline{\underline{K}}\underline{g}'_L - f_{CR}\underline{\underline{K}}\underline{g}'_R, \quad \underline{\underline{K}} \text{ pos. semidef. with } \underline{\underline{K}}\underline{\underline{D}} = \underline{0}$$

Derivation of energy stable FR schemes:

$$\underline{\underline{M}} \frac{d\underline{u}}{dt} + \underline{\underline{S}} \underline{f} = RHS_{DG} + \int_{\Omega_i} (f_{CL}g_L + f_{CR}g_R) \underline{\Phi}' dx$$
$$\underline{\underline{K}} \frac{d\underline{u}}{dt} + \underline{\underline{K}} \underline{\underline{D}} \underline{f} = -f_{CL} \underline{\underline{K}} \underline{g}'_L - f_{CR} \underline{\underline{K}} \underline{g}'_R, \quad \underline{\underline{K}} \text{ pos. semidef. with } \underline{\underline{K}} \underline{\underline{D}} = \underline{0}$$

Summing up yields

$$\left(\underline{\underline{M}} + \underline{\underline{K}}\right) \frac{d\underline{\underline{u}}}{dt} + \underline{\underline{S}}\underline{f} = RHS_{DG} + f_{CL} \left(\int_{\Omega_i} \underline{g}_L \underline{\Phi}' dx - \underline{\underline{K}} \underline{g}'_L \right) + f_{CR} \left(\int_{\Omega_i} \underline{g}_R \underline{\Phi}' dx - \underline{\underline{K}} \underline{g}'_R \right)$$

Derivation of energy stable FR schemes:

$$\underline{\underline{M}} \frac{d\underline{u}}{dt} + \underline{\underline{S}} \underline{f} = RHS_{DG} + \int_{\Omega_i} (f_{CL}g_L + f_{CR}g_R) \underline{\Phi}' dx$$
$$\underline{\underline{K}} \frac{d\underline{u}}{dt} + \underline{\underline{K}} \underline{\underline{D}} \underline{f} = -f_{CL}\underline{\underline{K}} \underline{g}'_L - f_{CR}\underline{\underline{K}} \underline{g}'_R, \quad \underline{\underline{K}} \text{ pos. semidef. with } \underline{\underline{K}} \underline{\underline{D}} = \underline{0}$$

Summing up yields

$$\left(\underline{\underline{M}} + \underline{\underline{K}}\right) \frac{d\underline{\underline{u}}}{dt} + \underline{\underline{S}}\underline{f} = RHS_{DG} + f_{CL} \left(\int_{\Omega_i} \underline{g}_L \underline{\underline{\Phi}}' dx - \underline{\underline{K}} \underline{\underline{g}}'_L \right) + f_{CR} \left(\int_{\Omega_i} \underline{g}_R \underline{\underline{\Phi}}' dx - \underline{\underline{K}} \underline{\underline{g}}'_R \right)$$

VCJH schemes [Vincent/Castonguay/Jameson '10]

• Choose g_L, g_R such that red terms vanish for suitable \underline{K}

Derivation of energy stable FR schemes:

$$\underline{\underline{M}} \frac{d\underline{u}}{dt} + \underline{\underline{S}} \underline{f} = RHS_{DG} + \int_{\Omega_i} (f_{CL}g_L + f_{CR}g_R) \underline{\Phi}' dx$$
$$\underline{\underline{K}} \frac{d\underline{u}}{dt} + \underline{\underline{K}} \underline{\underline{D}} \underline{f} = -f_{CL}\underline{\underline{K}} \underline{g}'_L - f_{CR}\underline{\underline{K}} \underline{g}'_R, \quad \underline{\underline{K}} \text{ pos. semidef. with } \underline{\underline{K}} \underline{\underline{D}} = \underline{0}$$

Summing up yields

$$\left(\underline{\underline{M}}+\underline{\underline{K}}\right)\frac{d\underline{\underline{u}}}{dt}+\underline{\underline{S}f}=RHS_{DG}+f_{CL}\left(\int_{\Omega_{i}}g_{L}\underline{\Phi}'dx-\underline{\underline{K}}\underline{\underline{g}}_{L}'\right)+f_{CR}\left(\int_{\Omega_{i}}g_{R}\underline{\Phi}'dx-\underline{\underline{K}}\underline{\underline{g}}_{R}'\right)$$

VCJH schemes [Vincent/Castonguay/Jameson '10]

- Choose g_L, g_R such that red terms vanish for suitable \underline{K}
- Similar to DG: <u>M</u> → <u>M</u> + <u>K</u> (modified mass matrix)
 → "filtered DG scheme" [Allaneau/Jameson '11]

Derivation of energy stable FR schemes:

$$\underline{\underline{M}} \frac{d\underline{u}}{dt} + \underline{\underline{S}} \underline{f} = RHS_{DG} + \int_{\Omega_i} (f_{CL}g_L + f_{CR}g_R) \underline{\Phi}' dx$$
$$\underline{\underline{K}} \frac{d\underline{u}}{dt} + \underline{\underline{K}} \underline{\underline{D}} \underline{f} = -f_{CL} \underline{\underline{K}} \underline{g}'_L - f_{CR} \underline{\underline{K}} \underline{g}'_R, \quad \underline{\underline{K}} \text{ pos. semidef. with } \underline{\underline{K}} \underline{\underline{D}} = \underline{0}$$

Summing up yields

$$\left(\underline{\underline{M}} + \underline{\underline{K}}\right) \frac{d\underline{\underline{u}}}{dt} + \underline{\underline{S}}\underline{f} = RHS_{DG} + f_{CL} \left(\int_{\Omega_i} \underline{g}_L \underline{\underline{\Phi}}' dx - \underline{\underline{K}} \underline{\underline{g}}'_L \right) + f_{CR} \left(\int_{\Omega_i} \underline{g}_R \underline{\underline{\Phi}}' dx - \underline{\underline{K}} \underline{\underline{g}}'_R \right)$$

VCJH schemes [Vincent/Castonguay/Jameson '10]

- Choose g_L, g_R such that red terms vanish for suitable \underline{K}
- Similar to DG: <u>M</u> → <u>M</u> + <u>K</u> (modified mass matrix)
 → "filtered DG scheme" [Allaneau/Jameson '11]

• Fulfills SBP property! $[\underline{\underline{D}} = \underline{\underline{M}}^{-1}\underline{\underline{S}} = (\underline{\underline{M}} + \underline{\underline{K}})^{-1}\underline{\underline{S}}]$

Comparison of low order DGSBP schemes

&

Use of kinetic energy preservation and skew-symmetric forms

Smooth solutions to 1D Navier-Stokes equations

Non-linear acoustic pressure wave

$$\rho(x,0) = 1, \ v(x,0) = 1, \ p(x,0) = 1 + 0.1\sin(2\pi x), x \in [0,1]$$

periodic BC, viscosity $\mu = 0.002$, Prandtl number Pr = 0.72

Gauss-Legendre vs. Gauss-Lobatto nodes

[N = 1 on 80 cells, KEP flux, T = 20; reference: N = 3 on 500 cells]

Higher accuracy of Gauss-Legendre DG scheme.

2D decaying homogeneous turbulence

Computed on cartesian grid discretizing $\Omega = [0, 2\pi]^2$, periodic b.c.

T = 0: Initial energy spectrum given in Fourier space by

$$E(k) = \frac{a_s}{2} \frac{1}{k_p} \left(\frac{k}{k_p}\right)^{2s+1} \exp\left[-\left(s+\frac{1}{2}\right) \left(\frac{k}{k_p}\right)^2\right]$$

for wave number $k = \sqrt{k_x^2 + k_y^2}$ (Parameters $k_p = 12, a_s = \frac{7^4}{48}$)

Comparison standard DG vs. DG-KEP scheme (I)

Energy spectrum T = 10Gauss nodes, N = 1

Re=100

SBP operators allow for conservative discretization of fluid equations in skew-symmetric form.

Comparison standard DG vs. DG-KEP scheme (II)

Re=600

Better representation of energy spectrum for KEP scheme. Specifically for in underresolved case.

Current successful implementations of DG and FR schemes

The FLEXI Project

https://www.flexi-project.org

F. Hindenlang, G. J. Gassner, C. Altmann, A. Beck, M. Staudenmaier, C. Munz, "Explicit discontinuous Galerkin methods for unsteady problems", Computers & fluids 61, pp. 86–93, 2012.

http://www.pyfr.org/index.php

F. D. Witherden, A. M. Farrington, P. E. Vincent, "PyFR: An Open Source Framework for Solving Advection-Diffusion Type Problems on Streaming Architectures using the Flux Reconstruction Approach", Computer Physics Communications 185, pp. 3028–3040, 2014.

Spectral/hp Element Framework: Nektar++

http://www.nektar.info/gallery/

C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto, R.M. Kirby, S.J. Sherwin, "Nektar++: An open-source spectral/ element framework", Computer Physics Communications 192, pp. 205–219, 2015.

DG for OpenFOAM ?

 $http://www.sfb1194.tu-darmstadt.de/teilprojekte_4/b/b05_1/index.de.jsp$

- developement within DG framework BoSSS (Bounded Support Spectral Solver)
- to be successively implemented in OpenFOAM

N. Müller, S. Krämer-Eis, F. Kummer, M. Oberlack, "A high-order discontinuous Galerkin method for compressible flows with immersed boundaries", Int. J. Numer. Meth. Engng. 110, pp. 3–30, 2017.

- 2 The Discontinuous Galerkin Scheme
- 3 SBP Operators & Flux Reconstruction
- 4 Current High Performance DG / FR Schemes

Thank you for your attention!