silentdynamics

Using OpenSource Software efficiently

Johann Turnow silentdynamics GmbH

2017-03-21

Contents

Motivation	InsightCAE	Example	Summary	

Motivation

InsightCAE

Example

Summary

Summary

What do OpenSource users expect?

- Use OpenSource Software (OSS) out of the box
- Easy to understand / simple handling
- Stable and fast environment!
- Includes every feature
- Validated performance
- Strong community support!
- Works on every platform

What do OpenSource (OpenFOAM) users get?

- ▶ Looking for OpenFOAM → four branches?!
- Which one is the best??
- Easy to understand?
- At least for PhD students who have the time....
- Stable?
- Try rhoSimpleFoam
- Validated performance?
- Where is the central database?
- Strong community support!
- • •
- Works on every platform?
- Try to compile OpenFOAM on the HLRN!

Summar

What do OpenSource (OpenFOAM) users need?

- Adressing numerical simulations (FEM/CFD) we need the full package
- Starting from:
 - Geometry generation / modification
 - Handle complex geometries
 - Trustful and fast meshing
 - Stable and fast simulation
 - Efficient post processing
 - Report generation (automated?)

Summary

What do OpenSource (OpenFOAM) users do?

- They do the whole dance!
 - Combine different openSource Tools
 - Geometry: FreeCAD / Blender / MeshLAB ...
 - Meshing: OpenFOAM / Netgen / Gmsh
 - Solving: OpenFOAM / Code Aster / Code Saturn
 - PostProcessing: Paraview / Ensight / python
- Of course, working process is possible
- But is it really efficient?

What do OpenSource (OpenFOAM) users require?

- Using CAE (CFD and/or FEM) productively for design tasks
 - involves repeated analysis of numerous similar variants
 - quick and efficient, with minimum pre/post processing effort
 - accurate, following a best-practice
 - safe, without need to repeat things because of user errors!
 - a thorough documentation of every analysis is needed
 - to review trends
 - backtrace errors

OpenSource Features

Motivation		InsightCAE	Exa	ample	Summary
------------	--	------------	-----	-------	---------

Can we achieve the requirements using OSS?

► Yes we can, because:

- OSS has an open architecture with many possibilities for automation
- many independent software tools for similar tasks are available but with different strengths and weaknesses
- need to combine and support multiple tools
- one quickly ends up in complicated workflows
- ► ⇒automation can hide complexity of the workflow

Automation Solution

silent**dynamics**

Notivation | InsightCAE | Example | Summ

What is the idea/aim of "InsightCAE"?

Conduct an "analysis" as much automated as possible

- Take a minimum of necessary parameters which need to be changed
- Standardization / best practice / testsuites for a given analysis/task
- Bundle addons, extensions and interfaces for all required external software utilities
- Automatic computation of many variants
- Fast case building
- Deployment: provide one installation package for all workflow-related software components

Software Concept

Now we have an software that combines all the steps of different software modules for an efficient computation

Motivation | InsightCAE | Example | Summary

Let's try InsightCAE for an classical example

- Task: Generate a duct that combines a rectangular with circle section
- ► Goals: uniform outflow, low pressure loss
- Using FreeCAD to sketch the inlet and outlet boundaries

So far so goodLet's start the dance.

Create geometrie

- How to generate the stl surfaces for applying snappy?
- Use iscad from InsightCAE to build up the model
 - iscad
 - > Use the console to import the FreeCAD sketches like: xsec_kf=Sketch(YZ, "sketches.fcstd", 'xsec_k'); xsec_k=Wire(xsec_kf?alledges); xsec_l=Wire(Sketch(YZ, "sketches.fcstd", 'xsec_l')?alledges);
- Extrude the sketches
 - housing= Sweep(xsec_k, xsec_l);

Give me the stl file: exportSTL("housing.stlb", 1e-2) « housing;

Mesh setup

- Generate the mesh setup for snappyHexMesh
- Use isofCaseBuilder

General Boundary Conditions		Create
~ Available Case Elements	Case Elements snappyHexMeshConfiguration	Save config
Uncategorized > Body Force > Turbulence Model > Numerics > Postprocessing > Rotation > Meshing	blockMeshDict_Box MeshingNumerics	Cancel OF version: OFdev ~ Save version
>-Material Properties	~~	

- Give me the state file for the mesh setup
- Save as mesh.iscb

Case setup

- Generate the case setup
- Use isofCaseBuilder

General Boundary Conditions		Create
	Case Elements	Save config
 Available Case Elements Uncategorized 	simpleFoamNumerics singlePhaseTransportProperties	Load config
>- Body Force	kOmegaSST	Cancel
>- Numerics	>>	OF version: OFdev ~
>- Rotation >- Meshing		Save version
>- Material Properties		
	<<	

Example

- Give me the state file for the case setup
- Save as case.iscb

```
Example
Running the case
 We are almost done
 Now easy automatization run.sh
   # !/bin/bash
   isofCaseBuilder -b mesh.iscb &&
   blockMesh &&
   decomposePar &&
   mpirun -np 10 snappyHexMesh -overwrite -parallel &&
   isofCaseBuilder -b case.iscb &&
   mpirun -np 10 simpleFoam -parallel &&
   reconstructPar -latestTime &&
   rm -rf processor*
```

silentd	ynami	ics
---------	-------	-----

Motivation	InsightCAE	Example	Summary
------------	------------	---------	---------

Automated workflow

- 1. Change your sketches / Extrusion
- 2. Run the run.sh file
- 3. Start paraview
- That is not enough!
- PostProcessing still takes time
- $\blacktriangleright \ {\tt Start \ paraview} \rightarrow {\tt generate \ layouts} \rightarrow {\tt save \ the \ state \ file}$
- Apply our python script: isPV.py -b state.pvsm
- Gives us the pictures as png file for every paraview layout!

Rectangular	to circle duct		silent dynamics
Motivation	InsightCAE Example	Summary	

Automated workflow - here we go

▶ Version 1,2,3, ...

Summ

Let's summarize the dance

- Efficient computations are possible using OSS
- InsightCAE connects different OSS using predefined interfaces
- Standardized simulations / reducting of time consuming user mistakes
- Quality is ensured
- We get a really fast workflow!

End

Motivation

InsightCAE

Example

Summary

Thank you very much!

```
Johann Turnow
Email: johann.turnow@silentdynamics.de
Tel.: +49 381 36 76 84 11
```

```
silentdynamics GmbH
http://silentdynamics.de
$ sudo add-apt-repository
http://downloads.silentdynamics.de/ubuntu
$ sudo apt-key adv -recv-key -keyserver keys.gnupg.net
79F5CBA4
$ sudo apt-get update
$ sudo apt-get install insightcae-base
```