Recent DES results for aerodynamic and aeroacoustic applications in OpenFOAM

C. Mockett¹, M. Fuchs¹, L. Fliessbach² & F. Thiele¹

Introduction

- Detached-Eddy Simulation (DES) is a popular hybrid RANS-LES method for efficient, turbulence-resolving simulations at high Reynolds number
- Increasingly applied for practical applications, e.g.:
 - Flow prediction for cases where RANS is insufficiently accurate (e.g. highly-unsteady, massively-separated, threedimensional flows)
 - Direct aeroacoustic simulation, where turbulent noise sources need to be resolved
- Continuing development of DES-based methods since their introduction by Spalart et al. (1997) has led to significant improvements
- A series of examples of DES application will be given in this talk:
 - "Natural" DES for wind turbine profile at $\alpha = 90^{\circ}$
 - Grey-area improved formulation:
 - Delta wing
 - Ahmed body
 - Synthetic turbulence generator for DES of atmospheric boundary layer over complex terrain
 - Broadband noise prediction of Rudimentary Landing Gear on unstructured grids

Example of "natural" DES

CFD Software E+F

Natural DES of wind turbine blade at $\alpha = 90^{\circ}$

Wind turbine blade at $\alpha = 90^{\circ}$

- Aerodynamic data needed in deep stall
- (U)RANS highly unreliable for massively-separated flows
- A "natural DES" application
- AVATAR NTUA18 profile at 90° angle of attack
 - Profile defined by National Technical University of Athens for AVATAR EU project
 - No measurement data available for high angles of attack
- Grid generated with *snappyHexMesh*
 - 11.61M cells
 - Spanwise domain size of 6 chord lengths
 - Refinement zones based on draft mesh DES
- Simulations with SA-DDES and SST-DDES
 - "Delayed DES" of Spalart et al., 2006 includes shield function designed to ensure RANS treatment of entire attached BL
- Hybrid convection scheme of Travin et al. (2000)
 - 2nd order CDS in regions of vortical flow
 - 2nd order upwind in irrotational flow regions
- Flow field statistics conducted over 275 CTU following initial transient of 35 CTU

CFD Software E+F GmbH

Unsteady flow behaviour

- Highly unsteady bimodal flow:
 - Modulates randomly between strong and weak shedding regimes
 - Very large statistical sample required

Mean lift and drag coefficients

- Error bars depict 95% confidence interval (CI) due to statistical uncertainty (computed with in-house *Meancalc* tool)
- No statistically significant difference between SA-DDES and SST-DDES

Component	Model	Mean	95% CI
C _x	SA-DDES	2.02	±0.058 (±3%)
	SST-DDES	1.99	±0.046 (±2%)
Cy	SA-DDES	0.0718	±0.0086 (±12%)
	SST-DDES	0.0703	±0.0068 (±10%)

Grey-area improved formulation

The Grey Area problem

- RANS to LES transition region in the early shear layer
- Model switches to LES mode after separation
 - No turbulent fluctuations from upstream •
 - Fluctuations must be generated by natural shear layer instability

Impact of the Grey Area in practice

- Unfortunately, weakly-separated flows generally represent the most important cases in practice
 - Limits of performance
 - Flight envelope boundaries
 - Maximum turbine blade loading
- Both RANS and current hybrid RANS-LES methods are unreliable here
- Another prominent example of the Grey Area problem in practice:
 - Jet noise prediction

What we want...

...what we get!

Schematic as example for wing flows Lift coefficient vs. angle of attack

Improved DES with accelerated RANS to LES transition

• Approach presented at 5th Symposium on Hybrid RANS-LES Methods:

C. Mockett, M. Fuchs, A. Garbaruk, M. Shur, P. Spalart, M. Strelets, F. Thiele, A. Travin: Two non-zonal approaches to accelerate RANS to LES transition of free shear layers in DES. In: Progress in Hybrid RANS-LES Modelling, Springer (2015)

- Our approaches aim to improve Grey Area by reducing eddy viscosity in the early shear layer
- Development priorities:
 - DES performance should not be degraded in other respects
 - Retain non-zonal nature of approach
 - Robust and applicable to complex cases
 - Generally-applicable method
- Two key ingredients:
 - A vorticity-adapted definition of the grid filter, denoted $\tilde{\Delta}_{\omega}$
 - Adopts form of σ model (Nicoud et al.) in LES-mode region

Delta wing

- Sharp leading edge, $\text{Re}_{mac} = 10^6$, M = 0.07, $\alpha = 23^\circ$
- Experimental data of Furman & Breitsamter, Aerospace Science & Technology, 24-1, 32-44, 2013
- Models compared on the same grid (6.3M cells, kindly provided by J. Kok, NLR)
- Snapshots of *Q* criterion

Resolved TKE at $x/c_r = 0.4$

CFD Software E+F GmbH

η CFD Software E+F GmbH

Experimental data TU Munich (VFE-2)

GOFUN 2018, Braunschweig, 21.02.2018

14

Ahmed body (25° slant angle)

- Initial results comparing grey-area improved DDES with standard DDES
- Prediction of correct flow topology for 25° case a well-established challenge for RANS and DES
 - Separating-reattaching flow over slant interacts with edge vortices
 - Vortices and shear layers strongly affected by greyarea problem
- Relatively coarse grid generated with snappyHexMesh
 - 5 prism layers, y^+ around 30-50
 - 4.6M cells
- Physical parameters:
 - Free-stream velocity: $U_{\infty} = 40 \ m/s$
 - Wind tunnel model: H = 0.288 m, L = 1.044 m
 - Reynolds number: $Re_H = 7.68 \times 10^5$

Instantaneous flow

significantly higher eddy viscosity in corner vortices for std. DDES

GOFUN 2018, Braunschweig, 21.02.2018

CFD Software E+F GmbH

Mean streamwise velocity on symmetry plane

Significant improvement of results through grey-area reduction, but not yet perfect. \rightarrow Increased grid resolution?

Resolved Reynolds shear stress u'w' on symmetry plane

Significant improvement of results through grey-area reduction, but not yet perfect. \rightarrow Increased grid resolution?

Atmospheric boundary layer over complex terrain

Volumetric Synthetic Turbulence Generator (VSTG)

- DES operating as wall-modelled LES (resolved turbulence inside BL, RANS confined to thin near-wall layer) using IDDES variant of Shur et al. (2008)
- Resolved atmospheric turbulence must be represented at inlet to scale-resolving domain
- VSTG (Volumetric Synthetic Turbulence Generator) method of Shur et al. (2017) implemented in OpenFOAM:
 - Generates resolved turbulence from precursor RANS of ABL
 - Reduces LES computational domain whilst taking mean flow effects of upstream domain into account
 - Volume source terms in momentum and turbulence equations
 - More easily applicable to complex geometries than most 2D synthetic turbulence methods
 - Source terms active in user-defined zone
 - Reasonable computational overhead

Validation of VSTG implementation: 3D hill test case

- Smooth 3D hill (analytical shape):
 - Experimental measurements conducted by Ishihara et al. (1999)
 - Complex flow pattern, difficult to capture with RANS \rightarrow SST-IDDES used
 - Resolved incoming turbulence key for good prediction

height (m)

30

Validation of VSTG implementation: 3D hill test case

Complex terrain simulation

- Functionality test of VSTG for challenging realworld application
- Wind turbine site in northern Spain:
 - Terrain with large elevation differences
 - 15 wind turbines & 2 measurement masts
- CFD setup:
 - Area of 10km x 10km is simulated
 - Turbulence model: SST-IDDES
 - VSTG applied
 - Transient SIMPLE-based solver
 - Incorporation of Coriolis force and uniform wall roughness
 - Neutral stratification
 - Geostrophic wind: $|U|_g = 15 m/s$

CFD Software E+F GmbH

Complex terrain simulation

- Mesh generation with snappyHexMesh
 - 20M cells
 - Variable resolution between 80m 2.5m

Complex terrain simulation

(validation with measurement data pending)

GOFUN 2018, Braunschweig, 21.02.2018

Broadband noise prediction on unstructured grids

Simulation approach and test case

- Requirements for direct aeroacoustic simulation:
 - Accurate, scale-resolving simulation methodology (grey-area improved DES)
 - Compressible solver with low spurious noise
 - Far-field integration method (Ffowcs Williams & Hawkings approach)
 - Solid data surfaces applicable at low Mach numbers (dipole sources only)
 - Permeable data surfaces encompassing source region needed for higher Mach numbers (additional quadrupole sources)
- Rudimentary Landing Gear (RLG) case:
 - Aerodynamic and aeroacoustic measurements available
 - From AIAA BANC workshop series
 - Generic 4-wheel landing gear mounted on flat "ceiling" plate
 - $Re_D = 1.0 \times 10^6$, M = 0.12

Aerodynamic measurements at National Aerospace Laboratories, Bangalore / India

Aeroacoustics measurements at University of Florida / USA

Grids

- Structured (ICEM-CFD), polyhedral-unstructured (ANSA) and hexahedral-unstructured (snappyHexMesh) grids compared
- All designed to resolve acoustics up to $St \approx 10$, prism layers down to $y^+ \approx 1$

structured, 37M cells

polyhedral, 18M cells

SHM, 21M cells

Grids

 Structured (ICEM-CFD), polyhedral-unstructured (ANSA) and hexahedral-unstructured (snappyHexMesh) grids compared

polyhedral, 18M cells

• All designed to resolve acoustics up to $St \approx 10$, prism layers down to $y^+ \approx 1$

structured, 37M cells

SHM, 21M cells

FWH data surfaces

• Alternative porous FWH data surfaces tested

Std. FWH surfaces

- Simple surface definition to safely avoid hydrodynamic fluctuations, which would induce spurious noise
- Evaluated on all grids

Tailored FWH surfaces

- Iso-surface of sensor function evaluated in precursor simulation
- Intended to define optimal FWH placement: As close to source region as possible, to minimise attenuation of high frequencies
- Scope for automated process
- Evaluated on SHM grid only

Improved solver with low spurious noise

- At the low Mach number of the RLG case (M=0.12), quadrupole noise should be negligible meaning that solid and permeable FWH approaches should agree
 - Used as indicator for spurious, numerical noise

Comparison of grids and FWH data surfaces

All grid types deliver very comparable results

Agreement with measurements within \approx 2dB up to grid resolution limit of *St* \approx 10

Tailored FWH surface increases resolution of high frequencies

GOFUN 2018, Braunschweig, 21.02.2018

Conclusions

Conclusions

- Growing number of examples showing benefits of DES for high-fidelity aerodynamic and aeroacoustic simulation in OpenFOAM
- Very wide range of applications demonstrate flexibility of method (and, of course, OpenFOAM)
- Our implementation of DES features integrated in openfoam.com version since v3.0+:
 - Standardised, validated & calibrated implementations of DES97, DDES and IDDES based on S-A and SST models
 - Hybrid convection scheme
 - Give it a try feedback welcome!
- New grey-area improved formulation improves prediction for cases with weaker shear layer instability without damaging performance for "natural DES" flows
- Accurate prediction of challenging low-Mach number aeroacoustics for different unstructured grid types
- Sensor function for optimal FWH surface placement:
 - Improves high-frequency resolution
 - Reduces scope for user error
 - Potential for automated procedure

7th Symposium on Hybrid RANS-LES Methods

- Berlin, 17th-19th September 2018
- Local organiser: CFD Software E+F GmbH
- Abstract submission deadline: 30th April 2018
- Proceedings in Springer NNFM series
- Registration opening soon: Early bird deadline 23rd June 2018
 - <u>https://hrlm7.sciencesconf.org</u>
- Sponsors:

Thank you for your attention

Acknowledgements

• Development of grey-area improved DES formulation and delta wing results funded by the EU in the FP7 project Go4Hybrid

Ahmed body study funded by Volkswagen AG

• Wind energy applications supported by ENERCON in the framework of the AssiSt project, funded by the German Federal Ministry for Economic Affairs and Energy (BMWi)

Bundesministerium für Wirtschaft und Energie

