
LeMoS

German OpenFOAM User meeting 2018 (GOFUN 2018)

Particle Simulation with
OpenFOAM®

Introduction, Fundamentals and
Application

ROBERT KASPER
Chair of Modeling and Simulation,
University of Rostock

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 1 / 48

LeMoS

Outline

Introduction
Motivation
Lagrangian-Particle-Tracking in OpenFOAM

Fundamentals
Dilute Versus Dense Flows
Phase-Coupling Mechanisms
Modeling Approaches for Particle Clouds
Governing Equations
Particle Forces
Particle Response Time/Stokes number
Particle-Particle Interaction

Application
How to build your own Eulerian-Lagrangian Solver in OpenFOAM?
How to use your own Eulerian-Lagrangian Solver in OpenFOAM?
Post-Processing with OpenFOAM/Paraview

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 2 / 48

LeMoS

Outline

Introduction
Motivation
Lagrangian-Particle-Tracking in OpenFOAM

Fundamentals
Dilute Versus Dense Flows
Phase-Coupling Mechanisms
Modeling Approaches for Particle Clouds
Governing Equations
Particle Forces
Particle Response Time/Stokes number
Particle-Particle Interaction

Application
How to build your own Eulerian-Lagrangian Solver in OpenFOAM?
How to use your own Eulerian-Lagrangian Solver in OpenFOAM?
Post-Processing with OpenFOAM/Paraview

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 3 / 48

LeMoS

Why Particle Simulations with OpenFOAM?

• OpenFOAM is free and open source
(customization and unlimited parallelization
possible)

• OpenFOAM is constantly under development
with a continuous growing community
(academic research, R&D in companies)

• OpenFOAM includes solvers for any
application of particle-laden flows (e.g.
process engineering, mechanical
engineering, civil engineering, physics,...)

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 4 / 48

LeMoS

Lagrangian-Particle-Tracking in OpenFOAM

• Solvers for any kind of particle-laden flow are already implemented1:

• DPMFoam/MPPICFoam: Transient solver for the coupled transport of a single
kinematic particle cloud including the effect of the volume fraction of particles on the
continuous phase (Multi-Phase Particle In Cell modeling is used to represent collisions
without resolving particle-particle interactions)

• uncoupledKinematicParcelFoam: Transient solver for the passive transport of a
single kinematic particle cloud

• reactingParcelFilmFoam: Transient solver for compressible, turbulent flow with a
reacting, multiphase particle cloud, and surface film modelling

• sprayFoam: Transient solver for compressible, turbulent flow with a spray particle cloud

• ...

• No proper solver available? Customize one of the existing...

1based on OpenFOAM-5.x

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 5 / 48

LeMoS

Outline

Introduction
Motivation
Lagrangian-Particle-Tracking in OpenFOAM

Fundamentals
Dilute Versus Dense Flows
Phase-Coupling Mechanisms
Modeling Approaches for Particle Clouds
Governing Equations
Particle Forces
Particle Response Time/Stokes number
Particle-Particle Interaction

Application
How to build your own Eulerian-Lagrangian Solver in OpenFOAM?
How to use your own Eulerian-Lagrangian Solver in OpenFOAM?
Post-Processing with OpenFOAM/Paraview

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 6 / 48

LeMoS

Dilute Versus Dense Flows

• Dilute flow: particle motion is controlled by the fluid forces (e.g. drag and lift)

• Dense flow: particle motion is controlled by collisions or continuous contact

Figure: Flow regimes for dilute and dense flows according to Crowe et al. (2011)

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 7 / 48

LeMoS

Phase-Coupling Mechanisms
• Phase-coupling mechanisms strongly influences the behavior of the continous and

dispersed phase:

• One-way coupling: fluid→ particles

• Two-way coupling: fluid � particles

• Four-way coupling: fluid � particles + particle collisions

10−8 10−6 10−4 10−2 100
10−1

100

101

102

103

104

105

106

one-way
coupling

(negligible
effect on

turbulence)

two-way
coupling

(particles enhance
production)

two-way
coupling

(particles enhance
dissipation)

four-way
coupling

αd = Vp/V

τ
p
/
τ
K

10−3

10−2

10−1

100

101

102

103

104

τ
p
/
τ
e

Figure: Classification of phase-coupling mechanisms according to Elghobashi (1994)

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 8 / 48

LeMoS

Modeling Approaches for Particle Clouds
• DEM: each particle is represented by an computational particle→ particle motion is

analyzed incorporating fluid forces, contact forces and moments due to neighboring
particles

• DPM: parcel of particles is represented by an computational particle→ dynamic
properties (size, velocity, etc.) for each particle in the parcel are the same

Figure: Different approaches for modeling particle clouds according to Crowe et al. (2011)

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 9 / 48

LeMoS

Governing Equations for particle motions

• Calculation of isothermal particle motions requires the solution of the following set of
ordinary differential equations:

dxp
dt

= up, mp
dup

dt
=
∑

Fi, Ip
dωp

dt
=
∑

T (1)

• Newton’s second law of motion presupposes the consideration of all relevant forces
acting on the particle, e.g., drag, gravitational and buoyancy forces, pressure forces:

mp
dup

dt
=
∑

Fi = FD + FG + FP + ... (2)

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 10 / 48

LeMoS

Drag Force

• Drag is the most important force (approx. 80 % of the total force) and is expressed in
terms of the drag coefficient CD :

FD = CD
πD2

p

8
ρf (uf − up) |uf − up| (3)

Drag correlations (spherical particle)

• Schiller-Naumann (1935):

CD =

{ 24
Rep

(
1 + 0.15Re0.687

p

)
if Rep ≤ 1000

0.44 if Rep > 1000
(4)

• Putnam (1961):

CD =

{
24
Rep

(
1 + 1

6 Re2/3
p

)
if Rep ≤ 1000

0.424 if Rep > 1000
(5)

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 11 / 48

LeMoS

Drag Force

10−1 100 101 102 103 104 105 106

10−1

100

101

102

Rep =
ρfDp|uf−up|

µf
[-]

C
D

[-
]

Measurement
Stokes regime
Newton regime
Schiller-Naumann
Putnam

Figure: Drag coefficient as a function of particle Reynolds number, comparison of experimental data with
correlations of Schiller-Naumann (1935) and Putnam (1961)

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 12 / 48

LeMoS

Gravity/Buoyancy and Pressure Gradient Force
• Gravitational and Buoyancy force is computed as one total force:

FG = mpg
(

1− ρf
ρp

)
(6)

• The force due to a local pressure gradient can be expressed for a spherical particle
simply as:

FP = −
πD3

p

6
∇p (7)

• Expressing the local pressure gradient∇p in terms of the momentum equation leads
to the final pressure gradient force:

Fp = ρf
πD3

p

6

(
Duf

Dt
−∇ · ν

(
∇uf +∇uT

f

))
(8)

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 13 / 48

LeMoS

Other Forces

• Added mass force: particle acceleration or deceleration in a fluid requires also an
accelerating or decelerating of a certain amount of the fluid surrounding the particle
(important for liquid-particle flows)

• Slip-shear lift force: particles moving in a shear layer experience a transverse lift
force due to the nonuniform relative velocity over the particle and the resulting
nonuniform pressure distribution

• Slip-rotation lift force: particles, which are freely rotating in a flow, may also
experience a lift force due to their rotation (Magnus force)

• Thermophoretic force: a thermal force moves fine particles in the direction of
negative temperature gradients (important for gas-particle flows)

• ...

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 14 / 48

LeMoS

Particle Response Time/Stokes number
• Particle response time is used to characterize the capability of particles to follow

sudden velocity changes in the flow

• From equation of motion for a spherical particle considering a Stokes flow (divided
through by particle mass and in terms of particle Reynolds number):

dup
dt

=
18µf

ρpD2
p︸ ︷︷ ︸

=1/τp

CDRep
24︸ ︷︷ ︸
≈1

(uf − up)→ up = uf [1− exp (−t/τp)] (9)

Particle response time & Stokes number

τp =
ρpD

2
p

18µf
, St = τp/τf (10)

0 1 2 3 4 5
0

0.63

1

t/τp

u
p
/
u
f

up
uf

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 15 / 48

LeMoS

Stokes number

Figure: Effect of an eddy (solid line) on particle trajectory for different Stokes numbers according to
Benavides and van Wachem (2008)

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 16 / 48

LeMoS

Particle-Particle Interaction
• OpenFOAM uses mainly the deterministic soft

sphere model (modified Cundall-Strack model)

• Particle-particle collisions are considered using a
spring, friction slider and dash-pot

• Normal force is expressed according to the
Hertzian contact theory :

Fn,ij =
(
−knδ3/2

n − ηn,jG · n
)

n (11)

• Tangential force is expressed by:

Ft,ij = −knδt − ηt,jGct or (12)

Ft,ij = −f |Fn,ij | t if |Ft,ii |j > f |Fn,ij | (13)

Figure: Normal force

Figure: Tangential force

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 17 / 48

LeMoS

Let’s get some practice... ,

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 18 / 48

LeMoS

Outline

Introduction
Motivation
Lagrangian-Particle-Tracking in OpenFOAM

Fundamentals
Dilute Versus Dense Flows
Phase-Coupling Mechanisms
Modeling Approaches for Particle Clouds
Governing Equations
Particle Forces
Particle Response Time/Stokes number
Particle-Particle Interaction

Application
How to build your own Eulerian-Lagrangian Solver in OpenFOAM?
How to use your own Eulerian-Lagrangian Solver in OpenFOAM?
Post-Processing with OpenFOAM/Paraview

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 19 / 48

LeMoS

How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?

• Problem: no proper solver is available for your requirements? /

• Solution: customize an existing solver for your own purposes! ,

Figure: Particle-laden flow in a simplified (cold) combustion chamber

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 20 / 48

LeMoS

How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?

1. Open a terminal and source OpenFOAM-5.x (if not already done)

2. Create a working directory for our Eulerian-Lagrangian solver and move into it:

$ mkdir particle_tutorial/ && mkdir particle_tutorial/solver/

$ cd particle_tutorial/solver/

3. Copy the original pimpleFoam solver (Large time-step transient solver for
incompressible, turbulent flow, using the PIMPLE (merged PISO-SIMPLE) algorithm)
from OpenFOAM-5.x and rename it:

$ cp -r $FOAM_SOLVERS/incompressible/pimpleFoam/ .

$ mv pimpleFoam pimpleLPTFoam

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 21 / 48

LeMoS

How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?

4. Move into the pimpleLPTFoam directory, change the name of the pimpleFoam.C file
and remove the pimpleDyMFoam and SRFPimpleFoam sub-solver directories:

$ cd pimpleLPTFoam

$ mv pimpleFoam.C pimpleLPTFoam.C

$ rm -r pimpleDyMFoam/ SRFPimpleFoam/

5. Copy the lagrangian library intermediate (includes submodels for particle forces,
particle collisions, injection and dispersion models,...) from OpenFOAM-5.x:

$ cp -r $FOAM_SRC/lagrangian/intermediate/ .

6. Open the createFields.H file with a text editor for some customizations:

$ vi createFields.H

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 22 / 48

LeMoS

How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?

7. Add the following code lines after #include "createMRF.H" to create and read
the fluid density from the transportProperties and calculate the inverse fluid density:

createFields.H
Info« "Reading transportProperties\n" « endl;
IOdictionary transportProperties
(

IOobject
(

"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE

)
);
dimensionedScalar rhoInfValue
(

transportProperties.lookup("rhoInf")
);

dimensionedScalar invrhoInf("invrhoInf",(1.0/rhoInfValue));

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 23 / 48

LeMoS

How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?

8. Create a volScalarField for the fluid density and the dynamic fluid viscosity:

createFields.H
volScalarField rhoInf
(

IOobject
(

"rho",
runTime.constant(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE

),
mesh,
rhoInfValue

);

createFields.H
volScalarField mu
(

IOobject
(

"mu",
runTime.constant(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE

),
laminarTransport.nu()
*rhoInfValue

);

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 24 / 48

LeMoS

How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?

9. Initialize the basicKinematicCollidingCloud (includes particle-particle interactions):

createFields.H
const word kinematicCloudName
(

args.optionLookupOrDefault<word>("cloudName", "kinematicCloud")
);
Info« "Constructing kinematicCloud " « kinematicCloudName « endl;
basicKinematicCollidingCloud kinematicCloud
(

kinematicCloudName,
rhoInf,
U,
mu,
g

);

10. Open the pimpleLPTFoam.C file for some customizations:

$ vi pimpleLPTFoam.C

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 25 / 48

LeMoS

How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?
11. Add the basicKinematicCollidingCloud.H and readGravitationalAcceleration.H to the

existing header files:

pimpleLPTFoam.C
...
#include "turbulentTransportModel.H"
#include "pimpleControl.H"
#include "fvOptions.H"
#include "basicKinematicCollidingCloud.H"

// * //

int main(int argc, char *argv[])
{

#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "readGravitationalAcceleration.H"
#include "createControl.H"
#include "createTimeControls.H"
#include "createFields.H"

...

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 26 / 48

LeMoS

How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?
12. Add the kinematicCloud.evolve() function after the PIMPLE corrector loop:

pimpleLPTFoam.C
// –- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{

#include "UEqn.H"

// –- Pressure corrector loop

while (pimple.correct())
{

#include "pEqn.H"
}
if (pimple.turbCorr())
{

laminarTransport.correct();
turbulence->correct();

}
}

Info« "\nEvolving " « kinematicCloud.name() « endl;
kinematicCloud.evolve();

runTime.write();

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 27 / 48

LeMoS

How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?
13. Open the UEqn.H file for some customizations:

$ vi UEqn.H

14. Expand the momentum equation for two-way coupling (dusty gas equation with
point-force approach):

UEqn.H
tmp<fvVectorMatrix> tUEqn
(

fvm::ddt(U)
+ fvm::div(phi, U)
+ MRF.DDt(U)
+ turbulence->divDevReff(U)
==
fvOptions(U)
+ invrhoInf*kinematicCloud.SU(U)

);
fvVectorMatrix& UEqn = tUEqn.ref();

UEqn.relax();
March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 28 / 48

LeMoS

How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?

15. The implementation is (almost) done, but we need some customizations within the
Make directory of the intermediate library in order to compile everything correctly:

$ vi intermediate/Make/files

16. We want our own customized intermediate library (maybe to implement a own particle
force model or similar), so replace the last code line of the files file with:

files
LIB = $(FOAM_USER_LIBBIN)/libPimpleLPTLagrangianIntermediate

17. Tell the solver where he can find our intermediate library (and some additional too):

$ vi Make/options

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 29 / 48

LeMoS

How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?
options
EXE_INC =

-Ilagrangian/intermediate/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/lagrangian/basic/lnInclude \
-I$(LIB_SRC)/regionModels/surfaceFilmModels/lnInclude \
-I$(LIB_SRC)/regionModels/regionModel/lnInclude

EXE_LIBS = \
-L$(FOAM_USER_LIBBIN) \
-lPimpleLPTLagrangianIntermediate \
-llagrangian\
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lincompressibleTransportModels \
-lfiniteVolume \

...

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 30 / 48

LeMoS

How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?

18. Tell the compiler the name of our new Eulerian-Lagrangian solver:

$ vi Make/files

files
pimpleLPTFoam.C

EXE = $(FOAM_USER_APPBIN)/pimpleLPTFoam

19. Finally, we can compile the intermediate library and the solver:

$ wmake all

You received no error messages from the compiler?
Congratulations, your new Eulerian-Lagrangian solver is ready...

but how to use it? ,

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 31 / 48

LeMoS

How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?
Particle-laden backward facing step flow (Fessler & Eaton, 1999)

• Geometry:

• Step height: H = 26.7mm

• Channel height/width: h = 40mm, B = 457mm

• Length inlet and expansion channel: LU = 10h, LD = 35h

• Flow and particle characteristics:

• Centerline velocity and Reynolds number: U0 = 10.5m/s, Re0 = U0H/ν = 18,600

• Particle type: copper→Dp = 70µm, ρp = 8,800 kg/m3

• Particle mass loading ratio: η = ṁp/ṁf = 0.1

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 32 / 48

LeMoS

How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

Figure: Particle-laden backward-facing step flow according to Fessler & Eaton (1999)

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 33 / 48

LeMoS

How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

• Basic folder structure of any OpenFOAM case:

0: includes the initial boundary conditions

constant: includes the mesh (polyMesh folder), physical properties of the fluid
(transportProperties), particle properties and settings (kinematicCloudProperties),...

system: includes the simulation settings (controlDict), settings for numerical schemes
(fvSchemes) and solver for the algebraic equations systems (fvSolution), decomposition
methods (decomposeParDict), ...

• Download the current tutorial case setup using the git clone command:

Git repository on Bitbucket
$ git clone https://slint@bitbucket.org/slint/gofun2018_particletut.git

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 34 / 48

LeMoS

How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

1. We start with the mesh generation→ move into the tutorial directory and build the 2D
mesh using OpenFOAM’s blockMesh utility and check the mesh quality:

$ cd gofun2018_particletut/case/BFS/

$ blockMesh

$ checkMesh

Figure: Two-dimensional block-structured mesh for the particle-laden backward facing step flow

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 35 / 48

LeMoS

How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

2. Let’s see how to define initial boundary conditions (at the example of the velocity field):

U
dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField
{

inlet
{

type fixedValue;
value uniform (9.39 0 0);

}
outlet
{

type zeroGradient;
}
walls
{

type noSlip;
}
sides
{

type empty;
}

}

• OpenFOAM needs the dimension of the
flow field in SI-units

• You can set an initial flow field if present

• Each patch needs an initial boundary
condition

• Boundary conditions in OpenFOAM:

• Dirichlet (fixedValue)

• Neumann (fixedGradient/zeroGradient)

• Special types: cyclic, symmetry, empty
(for 2D caes), ...

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 36 / 48

LeMoS

How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

3. Let’s see how to set up the particle cloud:

kinematicCloudProperties
solution
{

active true;
coupled true;
transient yes;
cellValueSourceCorrection off;
maxCo 0.5;
interpolationSchemes
{

rho cell;
U cellPoint;
mu cell;

}
integrationSchemes
{

U Euler;
}

sourceTerms
{

schemes
{

U semiImplicit 1;
}

}

• Activate/de-activate the particle cloud

• Enable/disable phase coupling

• Transient/steady-state solution (max.
Courant number)

• Enable/disable correction of momentum
transferred to the Eulerian phase

• Choose interpolation/integration
schemes for the LPT and treatment of
source terms

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 37 / 48

LeMoS

How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

kinematicCloudProperties
constantProperties
{

parcelTypeId 1;
rho0 8800;
youngsModulus 1e4;
poissonsRatio 0.001;

}

subModels
{

particleForces
{

sphereDrag;

gravity;
}

• Define the physical particle properties:

• Density

• Young’s module (elastic modulus)

• Poisson’s ratio

• Define the relevant particle forces:

• Drag force

• Gravity/Buoyancy force

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 38 / 48

LeMoS

How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

kinematicCloudProperties
injectionModels
{

model1
{

type patchInjection;
patchName inlet;
duration 1;
parcelsPerSecond 33261;
massTotal 0;
parcelBasisType fixed;
flowRateProfile constant 1;
nParticle 1;
SOI 0.4;
U0 (9.39 0 0);
sizeDistribution
{

type fixedValue;
fixedValueDistribution
{

value 0.00007;
}

}
}

}

• Define the particle injection:

• Injection model + injection patch name

• Total duration of particle injection

• Injected parcels/particles per second

• Number of particles per parcel

• Start-of-injection time (SOI)

• Initial parcel/particle velocity (U0)

• Size distribution model (normal size
distribution, ...)

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 39 / 48

LeMoS

How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

kinematicCloudProperties
dispersionModel none;

patchInteractionModel
standardWallInteraction;

standardWallInteractionCoeffs
{

type rebound;
}

localInteractionCoeffs

heatTransferModel none;

surfaceFilmModel none;

collisionModel pairCollision;

stochasticCollisionModel none;

radiation off;

• Define the particle injection:

• Injection model + injection patch name

• Total duration of particle injection

• Injected parcels/particles per second

• Number of particles per parcel

• Start-of-injection time (SOI)

• Initial parcel/particle velocity (U0)

• Size distribution model (normal size
distribution, ...)

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 40 / 48

LeMoS

How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

kinematicCloudProperties
pairCollisionCoeffs
{

maxInteractionDistance 0.00007;
writeReferredParticleCloud no;
pairModel pairSpringSliderDashpot;
pairSpringSliderDashpotCoeffs
{

useEquivalentSize no;
alpha 0.12;
b 1.5;
mu 0.52;
cohesionEnergyDensity 0;
collisionResolutionSteps 12;

};
wallModel wallSpringSliderDashpot;
wallSpringSliderDashpotCoeffs
{

useEquivalentSize no;
collisionResolutionSteps 12;
youngsModulus 1e10;
poissonsRatio 0.23;
alpha 0.12;
b 1.5;
mu 0.43;
cohesionEnergyDensity 0;

};

}

• Set up the particle-particle and
particle-wall interaction model
coefficients:

• α: coefficient related to the coefficient
of restitution e (diagram!)

• b: Spring power→ b = 1 (linear) or
b = 3/2 (Hertzian theory)

• µ: friction coefficient

0.01 0.05 0.1 0.5 1 5
0

0.2

0.4

0.6

0.8

1

α [-]

e
[-
]

Figure: Relationship between α and the coefficient
of restitution e (Tsuji et al., 1992)

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 41 / 48

LeMoS

How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

kinematicCloudProperties
cloudFunctions
{

voidFraction1
{

type voidFraction;
}

}

• Set up some cloudFunctions (record
particle tracks, calculate particle
erosion, ...)

4. The last step is to define the vector of the gravitational acceleration:

g
dimensions [0 1 -2 0 0 0 0];

value (9.81 0 0);

5. Finally, start our solver (and write a log file):

$ pimpleLPTFoam > run.log

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 42 / 48

LeMoS

How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

6. Use OpenFOAM’s foamMonitor utiltiy to check the convergence of our solution:

$ foamMonitor -l postProcessing/residuals/0/residuals.dat

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 43 / 48

LeMoS

Post-Processing with OpenFOAM/Paraview

• OpenFOAM provides many utilities (e.g. sampling of data) and functionObjects (e.g.
calculation of forces and turbulence fields) for the analysis of simulation results

• The standard program for the graphical post-processing of OpenFOAM cases is
Paraview (see OpenFOAM user guide)

1. Start post-processing with Paraview by typing:

$ paraFoam

2. Load the last time step and check the velocity and pressure field:

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 44 / 48

LeMoS

Post-Processing with OpenFOAM/Paraview

3. Let’s check how much volume of each grid cell is occupied by particles (volume fraction
α = Vp/Vc of the dispersed phase):

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 45 / 48

LeMoS

Post-Processing with OpenFOAM/Paraview
4. Apply the Extract Block filter on the kinematicCloud and scale the particles using

the Glyph filter:

5. Sample the flow and particle velocity using OpenFOAM’s sample utility (see
OpenFOAM user guide) and plot the velocity profiles:

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 46 / 48

LeMoS

Literature

OpenFOAM User/Programmers Guide (www.openfoam.org)

Crow, T. C., Schwarzkopf, J. D., Sommerfeld, M. and Tsuji, Y., 2011, Multiphase flows with
droplets and particles, 2nd ed., CRC Press, Taylor & Francis.

Sommerfeld, M., 2010, Particle Motion in Fluids, VDI Heat Atlas, Springer.

Benavides, A. and van Wachem, B., 2008, Numerical simulation and validation of dilute turbulent
gas–particle flow with inelastic collisions and turbulence modulation, Powder Tech., Vol. 182(2),
pp. 294-306.

Elghobashi, S., 1994, On predicting particle-laden turbulent flows, Applied Scientific Research,
Vol. 52, pp. 309-329.

Fessler, J. R. and Eaton, J. K., 1999, Turbulence modification by particles in a backward-facing
step flow, J. Fluid Mech., Vol. 394, pp. 97-117.

Tsuji, Y., Tanaka, T. and Ishida, T., 1992, Lagrangian numerical simulation of plug flow of
collisionless particles in a horizontal pipe, Powder Tech., Vol. 71, 239-250.

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 47 / 48

LeMoS

Thank you for your attention!

Any questions?

Robert Kasper, M.Sc.

University of Rostock

Department of Mechanical Engineering and Marine Technology

Chair of Modeling and Simulation

Albert-Einstein-Str. 2

18059 Rostock

Email: robert.kasper@uni-rostock.de

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 48 / 48

	Introduction
	Motivation
	Lagrangian-Particle-Tracking in OpenFOAM

	Fundamentals
	Dilute Versus Dense Flows
	Phase-Coupling Mechanisms
	Modeling Approaches for Particle Clouds
	Governing Equations
	Particle Forces
	Particle Response Time/Stokes number
	Particle-Particle Interaction

	Application
	How to build your own Eulerian-Lagrangian Solver in OpenFOAM?
	How to use your own Eulerian-Lagrangian Solver in OpenFOAM?
	Post-Processing with OpenFOAM/Paraview

