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Why Particle Simulations with OpenFOAM?

• OpenFOAM is free and open source
(customization and unlimited parallelization
possible)

• OpenFOAM is constantly under development
with a continuous growing community
(academic research, R&D in companies)

• OpenFOAM includes solvers for any
application of particle-laden flows (e.g.
process engineering, mechanical
engineering, civil engineering, physics,...)
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Lagrangian-Particle-Tracking in OpenFOAM

• Solvers for any kind of particle-laden flow are already implemented1:

• DPMFoam/MPPICFoam: Transient solver for the coupled transport of a single
kinematic particle cloud including the effect of the volume fraction of particles on the
continuous phase (Multi-Phase Particle In Cell modeling is used to represent collisions
without resolving particle-particle interactions)

• uncoupledKinematicParcelFoam: Transient solver for the passive transport of a
single kinematic particle cloud

• reactingParcelFilmFoam: Transient solver for compressible, turbulent flow with a
reacting, multiphase particle cloud, and surface film modelling

• sprayFoam: Transient solver for compressible, turbulent flow with a spray particle cloud

• ...

• No proper solver available? Customize one of the existing...

1based on OpenFOAM-5.x
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Dilute Versus Dense Flows

• Dilute flow: particle motion is controlled by the fluid forces (e.g. drag and lift)

• Dense flow: particle motion is controlled by collisions or continuous contact

Figure: Flow regimes for dilute and dense flows according to Crowe et al. (2011)

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 7 / 48



LeMoS

Phase-Coupling Mechanisms
• Phase-coupling mechanisms strongly influences the behavior of the continous and

dispersed phase:

• One-way coupling: fluid→ particles

• Two-way coupling: fluid � particles

• Four-way coupling: fluid � particles + particle collisions
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Figure: Classification of phase-coupling mechanisms according to Elghobashi (1994)
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Modeling Approaches for Particle Clouds
• DEM: each particle is represented by an computational particle→ particle motion is

analyzed incorporating fluid forces, contact forces and moments due to neighboring
particles

• DPM: parcel of particles is represented by an computational particle→ dynamic
properties (size, velocity, etc.) for each particle in the parcel are the same

Figure: Different approaches for modeling particle clouds according to Crowe et al. (2011)
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Governing Equations for particle motions

• Calculation of isothermal particle motions requires the solution of the following set of
ordinary differential equations:

dxp
dt

= up, mp
dup

dt
=
∑

Fi, Ip
dωp

dt
=
∑

T (1)

• Newton’s second law of motion presupposes the consideration of all relevant forces
acting on the particle, e.g., drag, gravitational and buoyancy forces, pressure forces:

mp
dup

dt
=
∑

Fi = FD + FG + FP + ... (2)
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Drag Force

• Drag is the most important force (approx. 80 % of the total force) and is expressed in
terms of the drag coefficient CD :

FD = CD
πD2

p

8
ρf (uf − up) |uf − up| (3)

Drag correlations (spherical particle)

• Schiller-Naumann (1935):

CD =

{ 24
Rep

(
1 + 0.15Re0.687

p

)
if Rep ≤ 1000

0.44 if Rep > 1000
(4)

• Putnam (1961):

CD =

{
24
Rep

(
1 + 1

6 Re2/3
p

)
if Rep ≤ 1000

0.424 if Rep > 1000
(5)
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Drag Force

10−1 100 101 102 103 104 105 106

10−1

100

101

102

Rep =
ρfDp|uf−up|

µf
[-]

C
D

[-
]

Measurement
Stokes regime
Newton regime
Schiller-Naumann
Putnam

Figure: Drag coefficient as a function of particle Reynolds number, comparison of experimental data with
correlations of Schiller-Naumann (1935) and Putnam (1961)
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Gravity/Buoyancy and Pressure Gradient Force
• Gravitational and Buoyancy force is computed as one total force:

FG = mpg
(

1− ρf
ρp

)
(6)

• The force due to a local pressure gradient can be expressed for a spherical particle
simply as:

FP = −
πD3

p

6
∇p (7)

• Expressing the local pressure gradient∇p in terms of the momentum equation leads
to the final pressure gradient force:

Fp = ρf
πD3

p

6

(
Duf

Dt
−∇ · ν

(
∇uf +∇uT

f

))
(8)
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Other Forces

• Added mass force: particle acceleration or deceleration in a fluid requires also an
accelerating or decelerating of a certain amount of the fluid surrounding the particle
(important for liquid-particle flows)

• Slip-shear lift force: particles moving in a shear layer experience a transverse lift
force due to the nonuniform relative velocity over the particle and the resulting
nonuniform pressure distribution

• Slip-rotation lift force: particles, which are freely rotating in a flow, may also
experience a lift force due to their rotation (Magnus force)

• Thermophoretic force: a thermal force moves fine particles in the direction of
negative temperature gradients (important for gas-particle flows)

• ...
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Particle Response Time/Stokes number
• Particle response time is used to characterize the capability of particles to follow

sudden velocity changes in the flow

• From equation of motion for a spherical particle considering a Stokes flow (divided
through by particle mass and in terms of particle Reynolds number):

dup
dt

=
18µf

ρpD2
p︸ ︷︷ ︸

=1/τp

CDRep
24︸ ︷︷ ︸
≈1

(uf − up)→ up = uf [1− exp (−t/τp)] (9)

Particle response time & Stokes number

τp =
ρpD

2
p

18µf
, St = τp/τf (10)
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Stokes number

Figure: Effect of an eddy (solid line) on particle trajectory for different Stokes numbers according to
Benavides and van Wachem (2008)
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Particle-Particle Interaction
• OpenFOAM uses mainly the deterministic soft

sphere model (modified Cundall-Strack model)

• Particle-particle collisions are considered using a
spring, friction slider and dash-pot

• Normal force is expressed according to the
Hertzian contact theory :

Fn,ij =
(
−knδ3/2

n − ηn,jG · n
)

n (11)

• Tangential force is expressed by:

Ft,ij = −knδt − ηt,jGct or (12)

Ft,ij = −f |Fn,ij | t if |Ft,ii |j > f |Fn,ij | (13)

Figure: Normal force

Figure: Tangential force

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 17 / 48



LeMoS

Let’s get some practice... ,
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How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?

• Problem: no proper solver is available for your requirements? /

• Solution: customize an existing solver for your own purposes! ,

Figure: Particle-laden flow in a simplified (cold) combustion chamber
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How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?

1. Open a terminal and source OpenFOAM-5.x (if not already done)

2. Create a working directory for our Eulerian-Lagrangian solver and move into it:

$ mkdir particle_tutorial/ && mkdir particle_tutorial/solver/

$ cd particle_tutorial/solver/

3. Copy the original pimpleFoam solver (Large time-step transient solver for
incompressible, turbulent flow, using the PIMPLE (merged PISO-SIMPLE) algorithm)
from OpenFOAM-5.x and rename it:

$ cp -r $FOAM_SOLVERS/incompressible/pimpleFoam/ .

$ mv pimpleFoam pimpleLPTFoam
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How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?

4. Move into the pimpleLPTFoam directory, change the name of the pimpleFoam.C file
and remove the pimpleDyMFoam and SRFPimpleFoam sub-solver directories:

$ cd pimpleLPTFoam

$ mv pimpleFoam.C pimpleLPTFoam.C

$ rm -r pimpleDyMFoam/ SRFPimpleFoam/

5. Copy the lagrangian library intermediate (includes submodels for particle forces,
particle collisions, injection and dispersion models,...) from OpenFOAM-5.x:

$ cp -r $FOAM_SRC/lagrangian/intermediate/ .

6. Open the createFields.H file with a text editor for some customizations:

$ vi createFields.H
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How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?

7. Add the following code lines after #include "createMRF.H" to create and read
the fluid density from the transportProperties and calculate the inverse fluid density:

createFields.H
Info« "Reading transportProperties\n" « endl;
IOdictionary transportProperties
(

IOobject
(

"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE

)
);
dimensionedScalar rhoInfValue
(

transportProperties.lookup("rhoInf")
);

dimensionedScalar invrhoInf("invrhoInf",(1.0/rhoInfValue));
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How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?

8. Create a volScalarField for the fluid density and the dynamic fluid viscosity:

createFields.H
volScalarField rhoInf
(

IOobject
(

"rho",
runTime.constant(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE

),
mesh,
rhoInfValue

);

createFields.H
volScalarField mu
(

IOobject
(

"mu",
runTime.constant(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE

),
laminarTransport.nu()
*rhoInfValue

);
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How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?

9. Initialize the basicKinematicCollidingCloud (includes particle-particle interactions):

createFields.H
const word kinematicCloudName
(

args.optionLookupOrDefault<word>("cloudName", "kinematicCloud")
);
Info« "Constructing kinematicCloud " « kinematicCloudName « endl;
basicKinematicCollidingCloud kinematicCloud
(

kinematicCloudName,
rhoInf,
U,
mu,
g

);

10. Open the pimpleLPTFoam.C file for some customizations:

$ vi pimpleLPTFoam.C
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How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?
11. Add the basicKinematicCollidingCloud.H and readGravitationalAcceleration.H to the

existing header files:

pimpleLPTFoam.C
...
#include "turbulentTransportModel.H"
#include "pimpleControl.H"
#include "fvOptions.H"
#include "basicKinematicCollidingCloud.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

int main(int argc, char *argv[])
{

#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "readGravitationalAcceleration.H"
#include "createControl.H"
#include "createTimeControls.H"
#include "createFields.H"

...
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How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?
12. Add the kinematicCloud.evolve() function after the PIMPLE corrector loop:

pimpleLPTFoam.C
// –- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{

#include "UEqn.H"

// –- Pressure corrector loop

while (pimple.correct())
{

#include "pEqn.H"
}
if (pimple.turbCorr())
{

laminarTransport.correct();
turbulence->correct();

}
}

Info« "\nEvolving " « kinematicCloud.name() « endl;
kinematicCloud.evolve();

runTime.write();
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How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?
13. Open the UEqn.H file for some customizations:

$ vi UEqn.H

14. Expand the momentum equation for two-way coupling (dusty gas equation with
point-force approach):

UEqn.H
tmp<fvVectorMatrix> tUEqn
(

fvm::ddt(U)
+ fvm::div(phi, U)
+ MRF.DDt(U)
+ turbulence->divDevReff(U)
==
fvOptions(U)
+ invrhoInf*kinematicCloud.SU(U)

);
fvVectorMatrix& UEqn = tUEqn.ref();

UEqn.relax();
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How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?

15. The implementation is (almost) done, but we need some customizations within the
Make directory of the intermediate library in order to compile everything correctly:

$ vi intermediate/Make/files

16. We want our own customized intermediate library (maybe to implement a own particle
force model or similar), so replace the last code line of the files file with:

files
LIB = $(FOAM_USER_LIBBIN)/libPimpleLPTLagrangianIntermediate

17. Tell the solver where he can find our intermediate library (and some additional too):

$ vi Make/options
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How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?
options
EXE_INC =

-Ilagrangian/intermediate/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/lagrangian/basic/lnInclude \
-I$(LIB_SRC)/regionModels/surfaceFilmModels/lnInclude \
-I$(LIB_SRC)/regionModels/regionModel/lnInclude

EXE_LIBS = \
-L$(FOAM_USER_LIBBIN) \
-lPimpleLPTLagrangianIntermediate \
-llagrangian\
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lincompressibleTransportModels \
-lfiniteVolume \

...
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How to build your own Eulerian-Lagrangian Solver in
OpenFOAM?

18. Tell the compiler the name of our new Eulerian-Lagrangian solver:

$ vi Make/files

files
pimpleLPTFoam.C

EXE = $(FOAM_USER_APPBIN)/pimpleLPTFoam

19. Finally, we can compile the intermediate library and the solver:

$ wmake all

You received no error messages from the compiler?
Congratulations, your new Eulerian-Lagrangian solver is ready...

but how to use it? ,
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How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?
Particle-laden backward facing step flow (Fessler & Eaton, 1999)

• Geometry:

• Step height: H = 26.7mm

• Channel height/width: h = 40mm, B = 457mm

• Length inlet and expansion channel: LU = 10h, LD = 35h

• Flow and particle characteristics:

• Centerline velocity and Reynolds number: U0 = 10.5m/s, Re0 = U0H/ν = 18,600

• Particle type: copper→Dp = 70µm, ρp = 8,800 kg/m3

• Particle mass loading ratio: η = ṁp/ṁf = 0.1
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How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

Figure: Particle-laden backward-facing step flow according to Fessler & Eaton (1999)
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How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

• Basic folder structure of any OpenFOAM case:

0: includes the initial boundary conditions

constant: includes the mesh (polyMesh folder), physical properties of the fluid
(transportProperties), particle properties and settings (kinematicCloudProperties),...

system: includes the simulation settings (controlDict), settings for numerical schemes
(fvSchemes) and solver for the algebraic equations systems (fvSolution), decomposition
methods (decomposeParDict), ...

• Download the current tutorial case setup using the git clone command:

Git repository on Bitbucket
$ git clone https://slint@bitbucket.org/slint/gofun2018_particletut.git
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How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

1. We start with the mesh generation→ move into the tutorial directory and build the 2D
mesh using OpenFOAM’s blockMesh utility and check the mesh quality:

$ cd gofun2018_particletut/case/BFS/

$ blockMesh

$ checkMesh

Figure: Two-dimensional block-structured mesh for the particle-laden backward facing step flow
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How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

2. Let’s see how to define initial boundary conditions (at the example of the velocity field):

U
dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField
{

inlet
{

type fixedValue;
value uniform (9.39 0 0);

}
outlet
{

type zeroGradient;
}
walls
{

type noSlip;
}
sides
{

type empty;
}

}

• OpenFOAM needs the dimension of the
flow field in SI-units

• You can set an initial flow field if present

• Each patch needs an initial boundary
condition

• Boundary conditions in OpenFOAM:

• Dirichlet (fixedValue)

• Neumann (fixedGradient/zeroGradient)

• Special types: cyclic, symmetry, empty
(for 2D caes), ...
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How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

3. Let’s see how to set up the particle cloud:

kinematicCloudProperties
solution
{

active true;
coupled true;
transient yes;
cellValueSourceCorrection off;
maxCo 0.5;
interpolationSchemes
{

rho cell;
U cellPoint;
mu cell;

}
integrationSchemes
{

U Euler;
}

sourceTerms
{

schemes
{

U semiImplicit 1;
}

}

• Activate/de-activate the particle cloud

• Enable/disable phase coupling

• Transient/steady-state solution (max.
Courant number)

• Enable/disable correction of momentum
transferred to the Eulerian phase

• Choose interpolation/integration
schemes for the LPT and treatment of
source terms
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How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

kinematicCloudProperties
constantProperties
{

parcelTypeId 1;
rho0 8800;
youngsModulus 1e4;
poissonsRatio 0.001;

}

subModels
{

particleForces
{

sphereDrag;

gravity;
}

• Define the physical particle properties:

• Density

• Young’s module (elastic modulus)

• Poisson’s ratio

• Define the relevant particle forces:

• Drag force

• Gravity/Buoyancy force
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How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

kinematicCloudProperties
injectionModels
{

model1
{

type patchInjection;
patchName inlet;
duration 1;
parcelsPerSecond 33261;
massTotal 0;
parcelBasisType fixed;
flowRateProfile constant 1;
nParticle 1;
SOI 0.4;
U0 (9.39 0 0);
sizeDistribution
{

type fixedValue;
fixedValueDistribution
{

value 0.00007;
}

}
}

}

• Define the particle injection:

• Injection model + injection patch name

• Total duration of particle injection

• Injected parcels/particles per second

• Number of particles per parcel

• Start-of-injection time (SOI)

• Initial parcel/particle velocity (U0)

• Size distribution model (normal size
distribution, ...)

March 22, 2018 © 2018 UNIVERSITY OF ROSTOCK | CHAIR OF MODELING AND SIMULATION 39 / 48



LeMoS

How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

kinematicCloudProperties
dispersionModel none;

patchInteractionModel
standardWallInteraction;

standardWallInteractionCoeffs
{

type rebound;
}

localInteractionCoeffs

heatTransferModel none;

surfaceFilmModel none;

collisionModel pairCollision;

stochasticCollisionModel none;

radiation off;

• Define the particle injection:

• Injection model + injection patch name

• Total duration of particle injection

• Injected parcels/particles per second

• Number of particles per parcel

• Start-of-injection time (SOI)

• Initial parcel/particle velocity (U0)

• Size distribution model (normal size
distribution, ...)
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How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

kinematicCloudProperties
pairCollisionCoeffs
{

maxInteractionDistance 0.00007;
writeReferredParticleCloud no;
pairModel pairSpringSliderDashpot;
pairSpringSliderDashpotCoeffs
{

useEquivalentSize no;
alpha 0.12;
b 1.5;
mu 0.52;
cohesionEnergyDensity 0;
collisionResolutionSteps 12;

};
wallModel wallSpringSliderDashpot;
wallSpringSliderDashpotCoeffs
{

useEquivalentSize no;
collisionResolutionSteps 12;
youngsModulus 1e10;
poissonsRatio 0.23;
alpha 0.12;
b 1.5;
mu 0.43;
cohesionEnergyDensity 0;

};

}

• Set up the particle-particle and
particle-wall interaction model
coefficients:

• α: coefficient related to the coefficient
of restitution e (diagram!)

• b: Spring power→ b = 1 (linear) or
b = 3/2 (Hertzian theory)

• µ: friction coefficient

0.01 0.05 0.1 0.5 1 5
0

0.2

0.4

0.6

0.8

1

α [-]

e
[-
]

Figure: Relationship between α and the coefficient
of restitution e (Tsuji et al., 1992)
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How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

kinematicCloudProperties
cloudFunctions
{

voidFraction1
{

type voidFraction;
}

}

• Set up some cloudFunctions (record
particle tracks, calculate particle
erosion, ...)

4. The last step is to define the vector of the gravitational acceleration:

g
dimensions [0 1 -2 0 0 0 0];

value (9.81 0 0);

5. Finally, start our solver (and write a log file):

$ pimpleLPTFoam > run.log
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How to use your own Eulerian-Lagrangian Solver in
OpenFOAM?

6. Use OpenFOAM’s foamMonitor utiltiy to check the convergence of our solution:

$ foamMonitor -l postProcessing/residuals/0/residuals.dat
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Post-Processing with OpenFOAM/Paraview

• OpenFOAM provides many utilities (e.g. sampling of data) and functionObjects (e.g.
calculation of forces and turbulence fields) for the analysis of simulation results

• The standard program for the graphical post-processing of OpenFOAM cases is
Paraview (see OpenFOAM user guide)

1. Start post-processing with Paraview by typing:

$ paraFoam

2. Load the last time step and check the velocity and pressure field:
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Post-Processing with OpenFOAM/Paraview

3. Let’s check how much volume of each grid cell is occupied by particles (volume fraction
α = Vp/Vc of the dispersed phase):
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Post-Processing with OpenFOAM/Paraview
4. Apply the Extract Block filter on the kinematicCloud and scale the particles using

the Glyph filter:

5. Sample the flow and particle velocity using OpenFOAM’s sample utility (see
OpenFOAM user guide) and plot the velocity profiles:
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Thank you for your attention!

Any questions?

Robert Kasper, M.Sc.

University of Rostock

Department of Mechanical Engineering and Marine Technology

Chair of Modeling and Simulation

Albert-Einstein-Str. 2

18059 Rostock

Email: robert.kasper@uni-rostock.de
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