
Latest meshing development in OpenFOAM GOFUN 2019

Copyright © ESI Group, 2019. All rights reserved.

Overview of content

- Directional refinement + stretching
- Excluding mesh generation in geometric region
- Generic leak detection (as a post processing tool)
- Improvement in run time performance of castellation
- Improvement in layer addition (single cell between walls)
- checkCase in snappyHexMesh

1906

1806

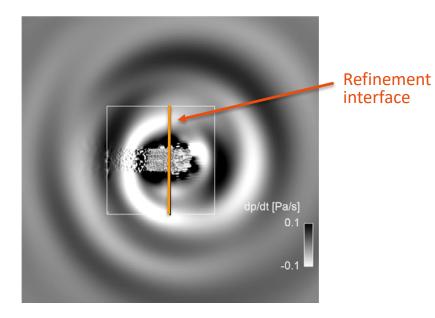
1812

1812

www.esi-group.com

Directional refinement

Why?


- Cube of 1m side with 100 cells in each direction = 1M cells
- Same cube with 100 cells in one direction while rest with 50 = 0.25M => 1/4th size!
- Aerodynamics/ aeroacoustics
 - Wake of vehicle, mirror consume more cells
 - Can have influence of 2:1 refinement transition
- Advantages of directional refinement
 - Reduction in cell count
 - Control of cell size in and across flow direction
 - Smooth cell size transition (uniform delta between cells, instead of 2:1)

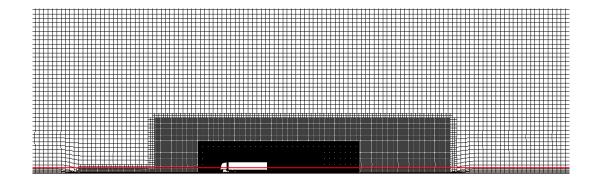
• Limitations

- the refinement is only in regions there is no surface-based equivalent
- the starting mesh has to be coordinate axis aligned (you can move it afterwards using e.g. transformPoints)
- the resulting mesh will be incompatible with dynamic refinement/unrefinement.

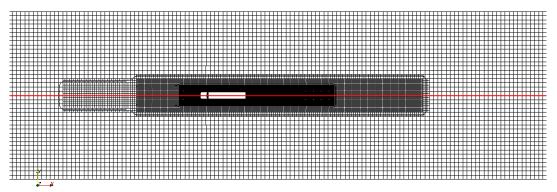
Directional stretching Why?

- Aeroacoustics application:
 - Refinement interface introduces spurious noise

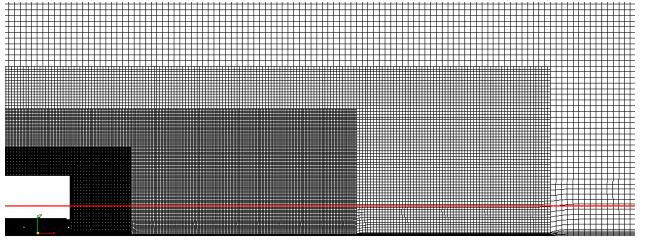
"A.H. Dawi, R.A.D. Akkermans, *Spurious noise in direct noise computation with a finite volume method for automotive applications, IJfHFF, vol. 72 (2018).*"

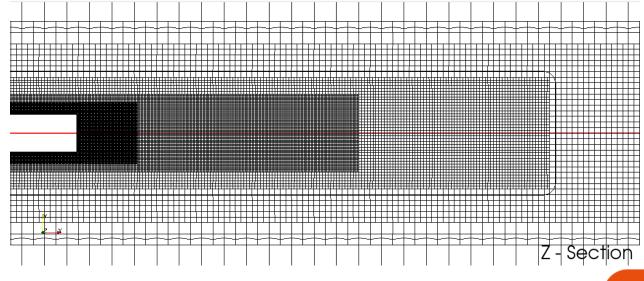

Directional Directional refinement + stretching refinement How? refinementRegions wake inside; mode // Dummy uniform refinement levels ((10000 0));// Directional refinement Directional // - for all cells with uniform level 0-1 refinement + stretching // - do one split in y and z direction. levelIncrement (0 1 (0 1 1)); // Directional expansion-ratio smoothing smoothDirection $(1 \ 0 \ 0);$ // Smoothing of expansion ratio nSmoothExpansion 100; // Smoothing of positions nSmoothPosition 100;

• Example:

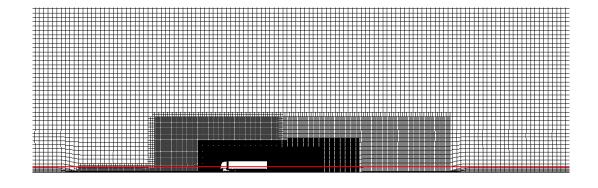


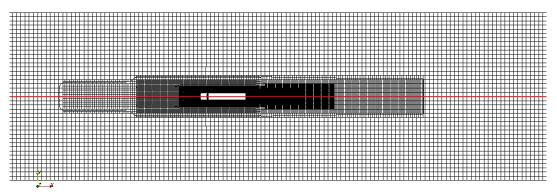
\$FOAM TUTORIALS/mesh/snappyHexMesh/aerofoilNACA0012 directionalRefinement


Directional refinement + stretching Example - Conventional approach

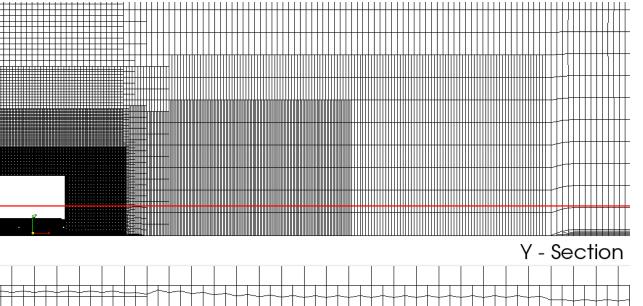

Y - Section

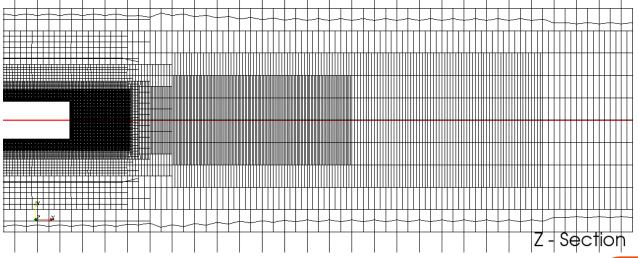
Z - Section


Y - Section

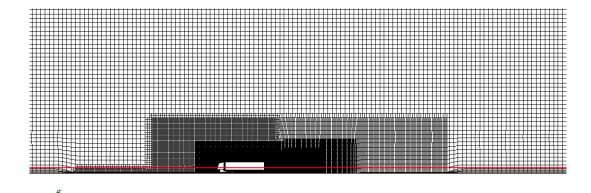


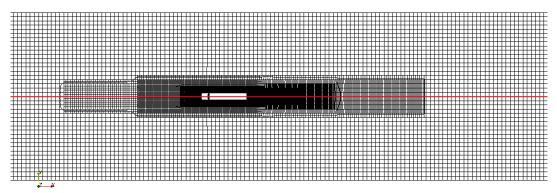
Copyright © ESI Group, 2019. All rights reserved.

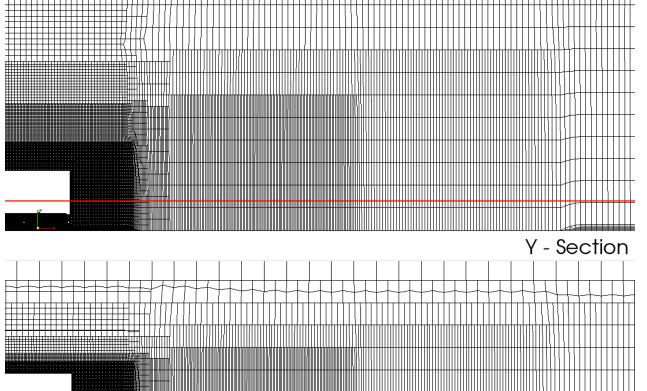

Directional refinement + stretching Directional refinement approach



Y - Section


Z - Section




Directional refinement + stretching Refinement + stretching approach

Y - Section

Z - Section

6

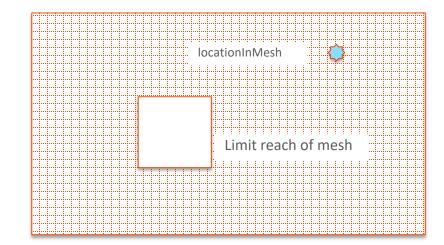

Directional refinement + stretching Statistics

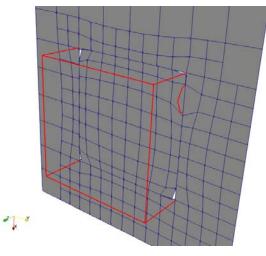
- Conventional approach : 25M cells
- Directional refinement : 24M cells
- Simulation details
 - Simulation time = 2000 iterations
 - Average for 500 iteration

	Conventional	Directional refinement	Directional refinement+ stretching
Delta drag value	0	-0.0034	-0.006
Castellation time (s)	407	391	483

Exclude mesh generation in a geometric region Intersecting geometry/ Raw CAD

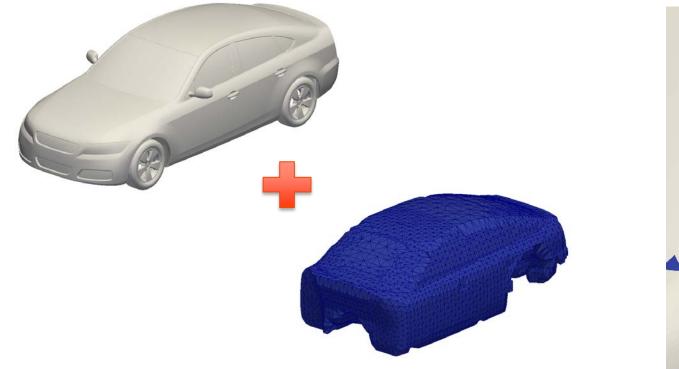
Known reason

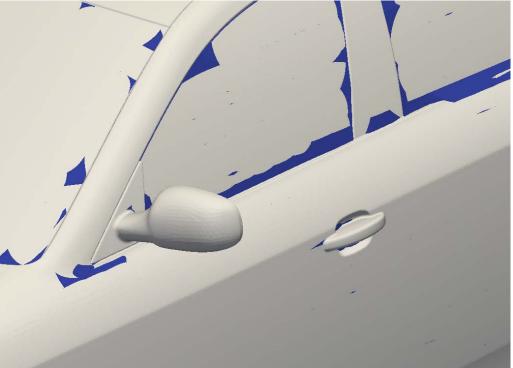

www.esi-group.com


Exclude mesh generation in a geometric region Concept

- Ways to handle mesh in unwanted region:
 - Leave the mesh inside, assuming less impact on solution
 - Overhead of cells!
 - Put a wrap geometry to avoid mesh penetration
 - Sounds good.
 - Lets explore!

- Test Scenarios using DrivAer^{\$}
 - Rubber seal of side window is removed.





Exclude mesh generation in a geometric region Using a wrap geometry – as a 'wall' surface

Geometry with wrap inside

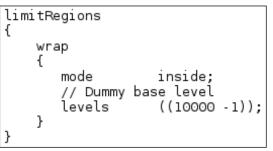
Zoom view showing possible issues

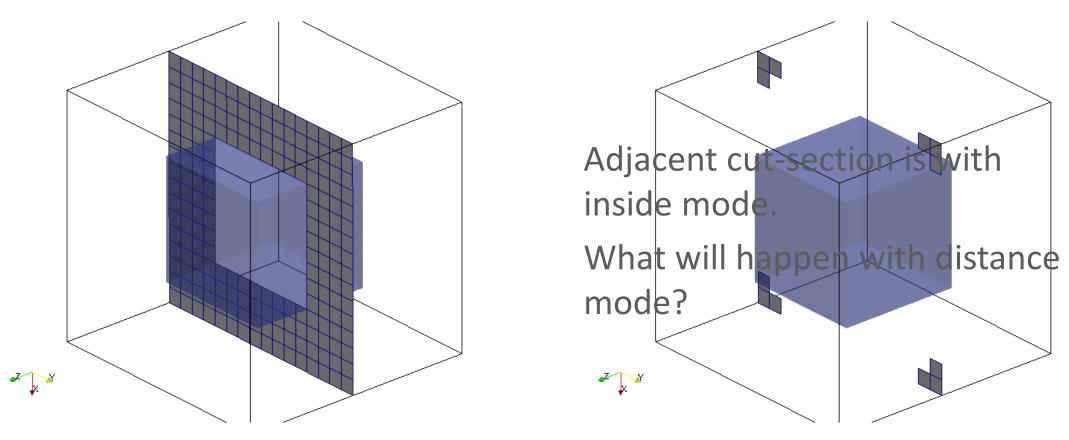


get it right

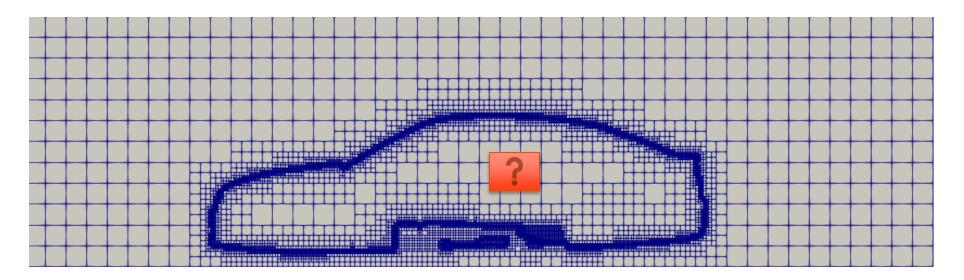
www.esi-group.com

Exclude mesh generation in a geometric region Using a wrap geometry – as a 'exclude' region


> Y cut section Without and with wrap geometry


Usage syntax

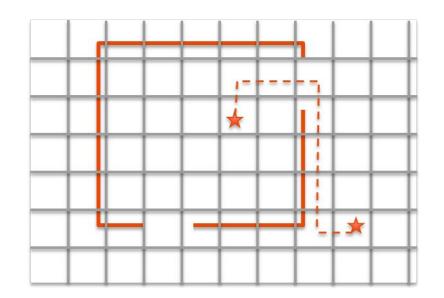
- We have feature limitRegions
 - For limiting refinement level
- Enhanced to use special input -1
 - Will remove all cells!
- Surface will not be used for patch assignment



Exclude mesh generation in a geometric region Fun time!

Leak detection Where do I look into?

Unknown reason

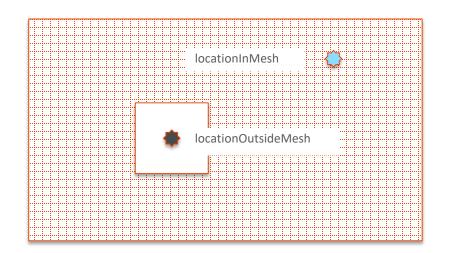

www.esi-group.com

Leak detection

Via 'postProcess' tool

```
postProcessingDict
functions
   processorField
       // Type of functionObject
                         processorField;
        type
       // Where to load it from (if not already in solver)
libs ("libfieldFunctionObjects.so");
       // Function object enabled flag
        enabled
                         true:
        // When to output the average fields
        writeControl writeTime;
   }
   leakFind
                         sets;
        type
        writeControl
                         timeStep;
        interpolationScheme cell:
        setFormat
                       vtk:
        sets
            leakFind
                         shortestPath;
                 type
                insidePoints
                                ((3.0001 3.0001 0.43));
                outsidePoints ((1 0 1.3));
                axis xyz;
       );
        // Needs at least one field
        fields
                         ( processorID );
   }
```

- Any mesh could be operated on
- At present the following formats are available for use.
 - CSV
 - ensight
 - gnuplot
 - jplot
 - raw
 - vtk
 - Xmgr

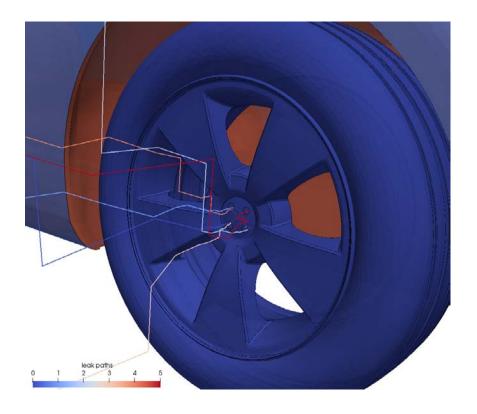

get it right

Leak detection

While generating mesh ?

- At present, user can provide locationsOutsideMesh
 - If mesh reaches this location, SHM exit with error.
- We have extended this functionality to dump the path before it exit
- Test Scenarios on DrivAer^{\$}
 - Wheel rim with example bolts removed
 - Rubber seal of side window is removed.

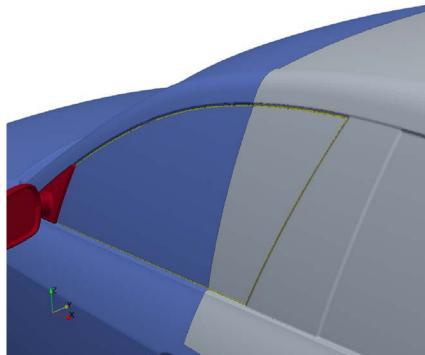
// Optional locations that should not be reachable from // location(s)InMesh locationsOutsideMesh ((100 100 100));


\$ Fastback variant used from https://www.aer.mw.tum.de

Leak detection Tests on DrivAer

Illustration of missing geometry Nuts are removed

Leak path pass through missing parts



Copyright © ESI Group, 2019. All rights reserved.

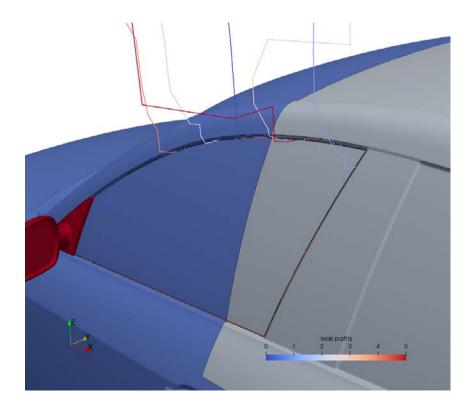
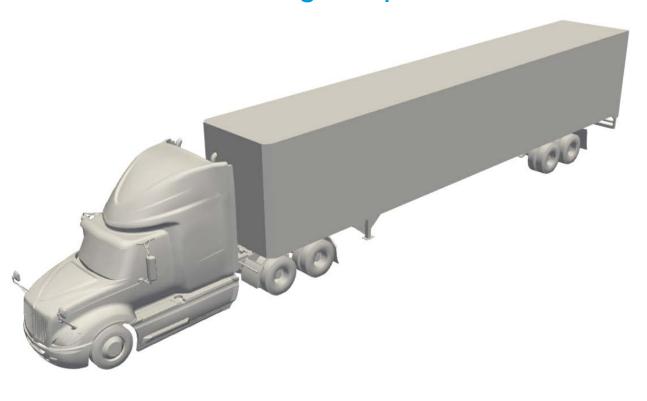

Leak detection Tests on DrivAer

Illustration of thin gap Rubber seal is removed

Leak path pass through gap

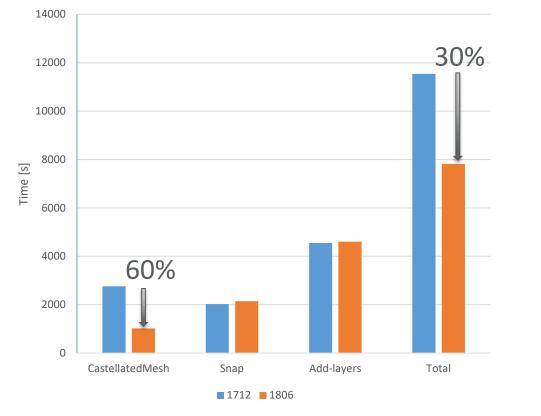


Leak detection Tests on DrivAer – All leak paths

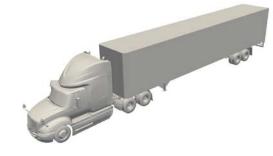
Copyright © ESI Group, 2019. All rights reserved.

Improvement in castellation performance regionSplit

it right®


• Case:

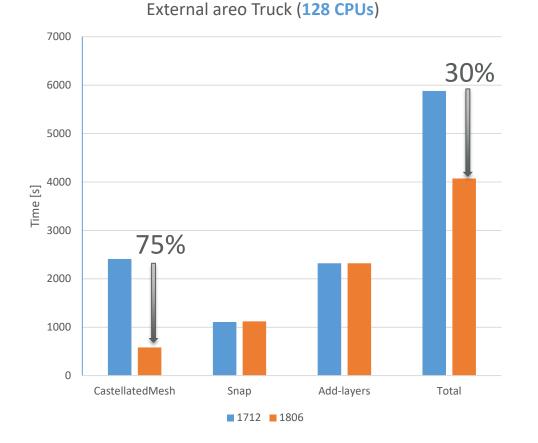
Statistics


• External aero for truck geometry

Improvement in castellation performance

- Cell count: 148M
- Significant (~60-70%) reduction in castellation stage
- No change in memory requirement
- No change in quality of mesh

External areo Truck (64 CPUs)

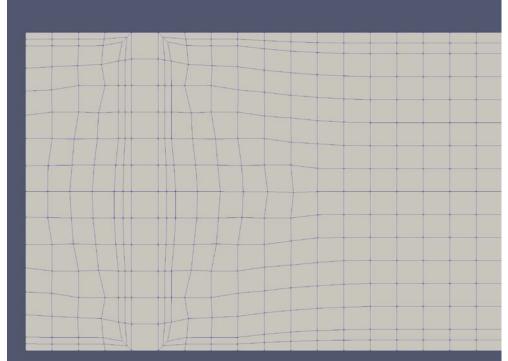

23

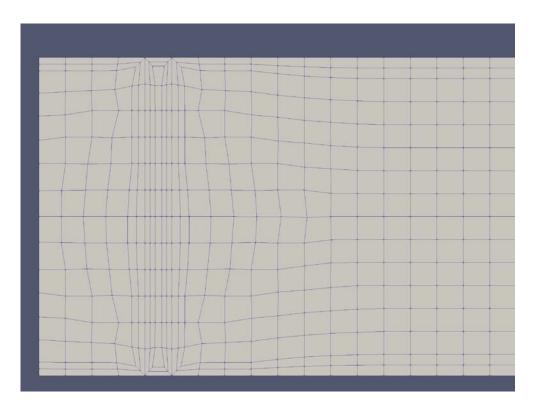
Improvement in castellation performance

Statistics

- Case:
 - External aero for truck geometry
 - Cell count: 148M
- Significant (~60-70%) reduction in castellation stage
- No change in memory requirement
- No change in quality of mesh

00




24

Improvement in layer addition

Medial axis method – single cell between opposing faces

v1806 (or develop with disableWallEdges false)

Develop

checkCase in snappyHexMesh

Copyright © ESI Group, 2019. All rights reserved.

- 28

checkCase in snappyHexMesh Why?

- Running any OpenFOAM application, including mesh generators, requires a complex set of input dictionaries to be correct.
 - Previously, a special command line option, '-dry-run'
- Goal: introduce similar option '-dry-run' into snappyHexMesh

29

checkCase in snappyHexMesh

How?

- Check existence of all required sections in snappyHexMeshDict
 - Geometry
 - Castellation
 - Snapping
 - Layer addition
 - Mesh quality

// Mesh selection // ~~~~~~~~~~	Input Dict		
<pre>// all cells inters // section reachabl</pre>	patches get added f ecting the surfaces Initial mesh : cells Cells per refinement 0 1280 > FOAM Warning :	:1280 faces:4224	points:1701
	From function Fo in file snappyHe Reading "/net/br	xMeshDriver/refine	meters::refinement mentParameters/ref tr/pss/projects/SL nMesh' provided

Resulting output

		,,		
// Advanced				Resulting output
//- Number o nSmoothScale //- Amount t	Missir	ng/incorrect	t required dic [.]	tionary entries:
errorReducti	Entry	maxNonOrth	no' not found :	in dictionary "/ne
				tionary "/net/bru
				d in dictionary "/ n dictionary "/net
				ictionary "/net/br
				t found in diction
				t found in diction
	Entry	'minFaceWei	ight' not found	d in dictionary "/
	Entry	'minVolRati	io' not found :	in dictionary "/ne
	Entry	'minTwist'	not found in (dictionary "/net/b
				ound in dictionary
	Entry	'minDetermi	inant' not four	nd in dictionary "

Input Dict

#include "meshQualityDict"

meshQualityControls

checkCase in snappyHexMesh How?

• Check missing semi-colons

// Which of the steps to run castellatedMesh true; snap true addLayers true;

Input Dict

Selecting decompositionMethod none [1] --> FOAM Warning : Missing/incorrect required dictionary entries:

keyword 'snap' has 2 excess tokens in stream

3(true addLayers true)file: "/net/bruclu005/s Entry 'addLayers' not found in dictionary "/net/b

Resulting output

• Check existence of input geometry/feature files

Example output

(using name in refinementSurface which is not defined in geometry section)

--> FOAM Warning : From function int main(int, char**) in file snappyHexMesh.C at line 1209 Reading "/home/preston2/mattijs/OpenFOAM/work/Customer-The following geometry entries are not used: BANANA

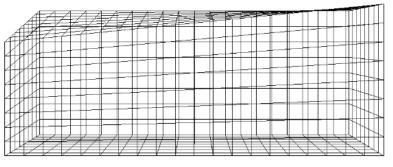
Example output

(using name in feature refinement which is not present in constant/triSurface)

Reading features.

--> FOAM FATAL IO ERROR: Could not open "<path>/constant/triSurface/motorBike2.eMesh"

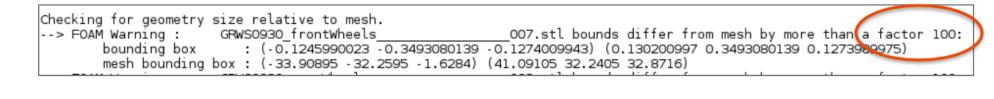
file: <path>/system/snappyHexMeshDict.castellatedMeshControls.features


From function void Foam::refinementFeatures::read(const Foam::objection file refinementFeatures/refinementFeatures.C at line 111.

FOAM exiting

checkCase in snappyHexMesh How?

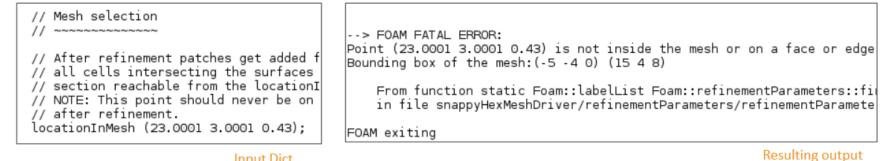
• Calculate bounding box of starting mesh. Check the alignment of all edges with one of the coordinate axes and issue a warning:


Initial mesh

Create mesh for time = 0

Read mesh in = 0.01 s Initial mesh has 9696 edges unaligned with any of the coordinate axes

Resulting output


• Check whether primitive parts are within the bounding box of the starting mesh. This will highlight if there has been a mistake in the X-Y-Z location/set-up of the primitive parts

checkCase in snappyHexMesh

How?

- Check existence of location/s in mesh, and issue a message whether
- inside/outside the initial mesh, initial bounding box of the geometries.
 - This would highlight if the location selected is wrong (because of the location or units), and whether it needs to be re-verified.
 - No warning will be issued, as both outside/inside meshes could be valid, as long as the location is inside the initial blockMesh.

Input Dict

checkCase in snappyHexMesh How?

- Output minimum expected cell size, including potential automated refinements
- This is calculated from the maximum refinement level (from feature, surface refinement, volume refinement level) and the average edge length of the starting mesh: cellSize = edgeLength*2^-refinementLevel

Cell size estimate : Level 0 : 2.875 Level 9 : 0.005615234375
Voxellating initial mesh : (208 176 96)

checkCase in snappyHexMesh

How?

- Output a guess for the expected number of cells after meshing
- The voxel mesh takes into account
 - surface refinement level
 - location(s)InMesh
 - volume refinement level
- but misses out on
 - feature refinement level
 - 2:1 refinement constraints
 - layers

After removing outside cells After surface refinement After keeping inside voxels	: (3514368) : 1(0) : 10(132268 3888 640 0 620 350 60 160 214 30) : 10(3219998 3888 640 0 620 350 60 160 214 30) : 10(2373120 620060 177160 57680 51378 1143 543 242 224 30)
---	---

What next? Many more to come...

OpenCFD's commitment to OpenFOAM Users

Global Conferences and independent User Group meetings

- OpenFOAM Release Features Webinar
 - Online, 28 Feb 2019
 - <u>https://www.esi-group.com/company/events/2019/openfoam-release-reatures-webinar</u>
- OpenFOAM 7th User Conference
 - Berlin, Germany, 15th-17th Oct. 2019
 - Call for papers, deadline: 31th May
- AIAA AVIATION Forum 2019
 - OpenFOAM® Aerospace Course
 - Dalles, Texas, USA, June 15-16 2019
- OpenFOAM North American conference, TBD, 2019
- OpenFOAM India, TBD, 2019

Apply OpenFOAM

https://www.openfoam.com/training/

- Aeroacoustics Course
 - Basics aeroacoustics source and propagation mechanisms, including a shallow dive into classical theory
 - Noise Propagation to the far-field using acoustics analogies, e.g. Curle

• etc

Overset Meshing and Applications Course

- Learn how to use overset meshing in OpenFOAM
- Best practice meshing, set-up and control settings, tutorials
- Industrial examples in external aerodynamics, high speed passing trains, ship maneuvering, fans
- External Aerodynamics Course
 - Learn how to use OpenFOAM for external aerodynamics
 - Turbulence modelling from RANS to DDES
 - Best practices to setup the case and post-processing

THANK YOU sebastien.vilfayeau@esi-group.com

Copyright © ESI Group, 2019. All rights reserved.