

Modeling of solid propellant burning procedure in inflator relevant applications

Introduction • the airbag

- more than 10 Airbags in modern premium cars
- a3ms injury criteria allows up to 80G's
 - Red Bull Air Race plane pilot experiences a maximum of 10G's

Introduction • the inflator

- fill a 60L airbag within 30ms with 1.5bar absolute pressure
- initiator, transfers an electric signal into a chemical reaction
- booster, enhances the initiator reaction
- combustion-chamber, produces a large amount of fluid to fill an airbag

Introduction • problems developing an inflator

- inflator development is accompanied by many difficulties
 - non steady state behavior
 - short time span of approx. 50ms
 - one can't look inside the inflator during combustion

Introduction • problems developing an inflator

- only very few testing data
 - pressure can be measured
 - difficult temperature measurement
 - no velocity measurement
- current approach
 - analytical description of model
 - average pressure
 - ideal gas
 - adiabatic system

Solution process

- I. interface tracking
- II. propellant BC
- III. combustion modeling

Solution process • propellant surface tracking

Introduction of volScalarField lambda

$$\lambda = \frac{V_{\text{propellant}}}{V_{\text{propellant}} + V_{\text{fluid}}}$$

- reconstruction of propellant surface:
 - IsoAdvector Lib*

Solution process

I. interface tracking

II. propellant BC

III. combustion modeling

Solution process • IBM

- Using Immersed boundary method (IBM) to apply boundary conditions (BC) of the propellant onto the flow field
 - openHFDIB Lib*
- Problems with PISO-based algorithms

e.g. rhoPimpleFoam

Time: 80.0 ms

* "A Hybrid Fictitious Domain-Immersed Boundary Method for the Direct Simulation of Heat and Mass Transport in Fluid-Particle Systems" by F. Municchi, S. Radl & C. Goniva

3rd German OpenFoam User meetiNg - GOFUN - 2019

Solution process • IBM

 Applying IBM on rhoCentralFoam-Solver forwardstep – case

- I. interface tracking
- II. propellant BC

III. combustion modeling

Solution process • Surface motion

- Propellant surface is defined by volScalarField lambda
 - lambda has to change

Solution process • Governing equations

Set of governing equations by Clarke & Lowe*

$$\frac{d}{dt} \int_{V} U \, dV = -\int_{A} F_{j} n_{j} dA + \int_{V} (S_{ch} + S_{a}) \, dV$$

$$U = \begin{pmatrix} \rho \\ \rho c^{\alpha} \\ \rho u_{i} \\ \rho E \end{pmatrix}, \quad F_{j} = \begin{pmatrix} \rho u_{j} \\ \rho u_{j} c^{\alpha} \\ \rho u_{j} u_{i} + p \\ \rho u_{j} (E + pv) \end{pmatrix}, \quad S_{ch} = \begin{pmatrix} 0 \\ \Re^{\alpha} \\ 0 \\ 0 \end{pmatrix}, \quad S_{a} = \begin{pmatrix} \dot{M} \\ \dot{M}^{\alpha} \\ \dot{F} \\ \dot{H} \end{pmatrix}$$

• With the sources:

$$\dot{M} = \dot{r} \, \rho_{\text{propellant}}$$
 $\dot{F} = 0 : u_{\text{fluid}} \gg u_{\text{surf}}$
 $\dot{H} = \dot{M} \, e_{\text{heat of explosion}}$

current state of research

Results • Closed Vessel (3D)

- Applying derived solver onto closed vessel test
 - Volume ≈ 18cm³
 - Cylinder shaped propellant

• 2.5g of Guanidine nitrate propellant

Analytical Solutions suggest

$$\dot{r} = B p^n$$

 $B = 3.9421$
 $n = 0.661$

Results • Closed Vessel (3D)

Results based on analytical derived combustion law

Results • Summary and Outlook

- Summary:
 - proof of concept
 - OpenFOAM is capable of simulating solid propellant combustion
 - Code works in 2D as well as in 3D cases
- Outlook:
 - validation of methods
 - adding chemistry based combustion
 - Apply CFD simulations onto real inflator related applications

Thank you for your attention!

Tilo Laufer - Tilo.Laufer@eu.joysonsafety.com

