

Modelling of acoustic cavitation on a large scale with OpenFOAM

Sergey Lesnik, Gunther Brenner Institute of Applied Mechanics / TU Clausthal in cooperation with University Göttingen

German OpenFoam User meetiNg, Online, 22.04.2020

Acoustic cavitation

Source: Industrial Sonomechanics, LLC

Acoustic cavitation: multiscale problem

Motivation

- State of the art
 - fundamental physics of microscopic phenomena well understood
 - macroscopic computations: only linear bubble oscillations with homogeneous distribution
- Current ansatz
 - non-linear cavitation bubble oscillations
 - spatially inhomogeneous bubble distribution
 - relatively large geometries (~1-10dm³)
 - prediction of
 - ultrasound field
 - location of cavitation bubble clustering

Outline

3. Bubble Motion

Outline

3. Bubble Motion

Helmholtz equation (HE)

- Wave equation in frequency domain
 - *P*_{ac} complex sound pressure amplitude
 - k_m complex wave number of the gas-liquid mixture
- Computation with OpenFOAM
 - no complex numbers
 - decompose HE in two equations
 - solving in segregated manner leads to divergence in most cases

$$\nabla^2 P_{\rm ac} + k_{\rm m}^2 P_{\rm ac} = 0$$

$$K_r = \operatorname{Re}(k_{\mathrm{m}}^2), K_i = \operatorname{Im}(k_{\mathrm{m}}^2)$$
$$P_r = \operatorname{Re}(P_{\mathrm{ac}}), P_i = \operatorname{Im}(P_{\mathrm{ac}})$$

$$\nabla^2 P_r + K_r P_r - K_i P_i = 0$$
$$\nabla^2 P_i + K_r P_i + K_i P_r = 0$$

HE discretization and solution

 Discretized with block-coupled matrix to couple equations implicitly (foam-extend)

- The matrix of discretized HE is highly indefinite
 - iterative solvers diverge
- Interface implemented to a direct solver (MUMPS)
 - MUltifrontal Massively Parallel sparse direct Solver

Institut für Technische Mechanik

Outline

3. Bubble Motion

Radial bubble dynamics (RBD)

Time period $T = 50 \mu s$ (f = 20 kHz)

Source: University of Göttingen, Drittes Physikalisches Institut

Toegel model: 3 ODEs

Keller-Miksis eqn. (*R* – bubble radius)

$$\left(1 - \frac{\dot{R}}{c}\right)R\ddot{R} + \left(1 - \frac{\dot{R}}{3c}\right)\frac{3}{2}\dot{R}^2 = \frac{1}{\rho}\left[\left(1 + \frac{\dot{R}}{c}\right)\left(p_{\rm g} - |P_{\rm ac}|\sin(\omega t) - p_0\right) + \frac{R\dot{p}_{\rm g}}{c} - \frac{4\mu\dot{R}}{R} - \frac{2\sigma}{R}\right]$$

• energy transfer (θ – temperature)

$$\dot{\theta} = \frac{-p_g \frac{\mathrm{d}V}{\mathrm{d}t} + \dot{Q} + \frac{\mathrm{d}n_{\mathrm{vap}}}{\mathrm{d}t}(h_{\mathrm{vap}}(\theta_0) - u_{\mathrm{vap}}(\theta))}{n_{\mathrm{vap}}c_{V,\mathrm{vap}}(\theta) + n_{\mathrm{ncg}}c_{V,\mathrm{ncg}}(\theta)}$$

mass (vapor) transfer (n – amount of substance)

$$\dot{n}_{\rm vap} = SD(\theta_0) \frac{c_{\rm vap}(R) - c_{\rm vap}}{l_{\rm m,nl}}$$

Sergey Lesnik, Gunther Brenner

Coupling non-linear RBD and sound field

- Coupling via k_m (Louisnard model)
 - β void fraction / bubble density
 - Π_{Vi,Th} integrals over one oscillation period; physically: energy dissipated per bubble;

$$\nabla^2 P_{\rm ac} + k_{\rm m}^2 P_{\rm ac} = 0$$
$$\operatorname{Im}(k_{\rm m}^2) = -\frac{3\rho\omega\beta}{2\pi R_0^3} \frac{\Pi_{\rm Vi} + \Pi_{\rm Th}}{|P_{\rm ac}|^2}$$
$$\Pi_{\rm Vi} = \frac{1}{T} \int_0^T 16\pi\mu R \dot{R}^2 \,\mathrm{d}t$$

- $\Pi_{Vi,Th}$ indirectly dependent on P_{ac}
- 100cm³ reactor and $\beta = 10^{-5} \Rightarrow 2.3e+6$ bubbles

Coupling non-linear RBD and sound field

- Approach as pre-processing step:
 - 1. choose parameter range for $|P_{ac}|$
 - 2. solve RBD (implemented in python)
 - 3. compute integral values and save as interpolation tables

Coupling non-linear RBD and sound field

- Iterative process
 - highly non-linear, under-relaxation not sufficient
 - damped Newton-Raphson method implemented
 - jacobian with numeric differentiation

Boundary conditions

- Sonotrode immersed in a cylindrical geometry
 - typical setup also for large scale reactors
 - axisymmetric

Boundary conditions

- Sonotrode immersed in a cylindrical geometry
 - typical setup also for large scale reactors
 - axisymmetric

Geometry	Acoustics	Numerics
Symmetry axis	Symmetry axis	Empty
Walls	Sound hard	$\nabla P_{\rm ac} = 0$
Free surface	Sound soft	$P_{\rm ac}=0$
Sonotrode surface	In-phase displacement U_0	$\nabla P_{\rm ac} \sim U_0$
Sonotrode wall	Anti-phase displacement U_0	$\nabla P_{\rm ac} \sim (U_0, \phi_0)$

Linear vs. non-linear bubble oscillations

Linear vs. non-linear bubble oscillations

Outline

3. Bubble Motion

Bubble motion

- Euler-Lagrange (foam-extend)
- Force balance

$$m_{\rm b} \frac{\mathrm{d}U_{\rm b}}{\mathrm{d}t} = F_{\rm G} + F_{\rm Am} + F_{\rm D} + F_{\rm Bj}$$

- $m_{\rm b}$, $U_{\rm b}$ bubble mass and velocity
- Forces:
 - *F*_G gravitation
 - F_{Am} added mass
 - $F_{\rm D}$ drag
 - F_{Bj} Bjerknes, due to interaction of non-linear oscillation and acoustic pressure gradient

Coupling bubble motion

 Bjerknes force contains bubble volume term averaged over T

1D case

Stagnation locations

1D case inhomogeneous void fraction

Void fraction kept constant at transducer (on the right)

Coupling Liquid motion

1.6e + 05

24

 P_{ac} in Pa

2D axisymmetric wedge case

Liquid and bubble motion

Summary

- Computation of cavitation flows in large scale reactors
 - apply different models to different scales
 - coupling needs caution
- Validation of sub-models with the data from experiments
- Nucleation process needs more consideration
 - where do bubbles nucleate and dissolve?

Source code for Helmholtz solver (MUMPS interface): https://github.com/technoC0re

Questions?

Deutsche Forschungsgemeinschaft

Sergey Lesnik, Gunther Brenner