

The Importance of Boundary Layer Shielding in DES of Complex Flows

M. Fuchs <u>marian.fuchs@upstream-cfd.com</u> <u>C. Mockett</u>

charles.mockett@upstream-cfd.com

Introduction

Upstream CFD GmbH:

- Founded in Berlin in January 2019
- Team of five co-founders, total of 60 years professional experience
- Consultancy with expertise in:
 - Turbulence modelling
 - Aeroacoustics
 - Numerical methods
 - Optimisation
 - High-performance computing
- See <u>upstream-cfd.com</u> for more details
- OpenFOAM is our main CFD platform
 - All results presented today were generated with OpenFOAM
 - C. Mockett chairs the OpenFOAM Turbulence Technical Committee within the code governance structure (see <u>openfoam.com</u> for more details)

Today's talk:

- Detached-Eddy Simulation (DES) becoming more popular as computing resources grow
- Objectives of talk:
 - Increase awareness about one of the last major shortcomings of DES: Shielding
 - Present initial steps in ongoing work to resolve this shortcoming
- Web links to literature / further reading embedded in the PDF of these slides

Detached-Eddy Simulation (DES)

- A hybrid RANS-LES method:
 - RANS in attached boundary layers
 - All turbulence modelled
 - LES in massively-separated wakes
 - Most of turbulence resolved by grid and time step
- "Non-zonal":
 - No user-specification of RANS & LES zones needed
 - The model controls the placement of RANS & LES modes
- Advantages:
 - Significantly more accurate results than RANS, especially for massively-separated flows
 - Significantly lower computational expense than LES in attached boundary layers at high Re
- DES first introduced by <u>Spalart et al. in 1997</u> several revisions since published

Charles Mockett

LES

Institute of Fluid Mechanics and Engineering Acoustics Technische Universität Berlin

Still a useful introduction but not exactly up-to-date (2009)

PDF free to download via <u>ResearchGate</u>

RANS

4th German OpenFOAM User Meeting (GOFUN)

The Grey Area problem and its mitigation

- "Grey Area": Delayed transition from RANS to LES in free shear layer following BL separation
- Many practical flows are affected, e.g. shallow separation, vortices, jets...

•

and Multidisciplinary Design 134

Dieter Schwamborn Editors
Go4Hybrid: Grey Area
Mitigation for Hybrid
RANS-LES Methods

EU-funded <u>Go4Hybrid</u> project (2013-2015)

- We proposed a modified DES version named σ -DDES:
 - First publication: Mockett et al. (2015)
 - An extension to DDES, maintaining all key features of the original model
 - Strong reduction of Grey Area for a wide range of fundamental and complex flows: <u>Fuchs et al. (2020)</u>
- Results of σ -DDES better than or equivalent to standard DDES for all cases tested...
- ...until recently: Shielding problem!

upstream

What we want...

...what we get

Example results with $\sigma ext{-DDES}$

Direct comparisons with standard DDES (identical grid, numerics etc.)

For more information see e.g.:

- Fuchs et al. (2015) Delta wing case
- Fuchs et al. (2020) Review of formulation, 2D hump, Ahmed body, rudimentary landing gear cases

The last (?) problem: boundary layer shielding

• Most easily explained using original 1997 DES formulation:

 $L_{DES} = \min(L_{RANS}; C_{DES}\Delta)$

- Requirements for correct LES inside boundary layers:
 - Sufficient grid resolution to resolve the largest local turbulent scales
 - Presence of resolved turbulent content (eddies) in solution field
- Without the above, "Modelled Stress Depletion" (MSD) occurs:
 - Neither resolved (LES) nor modelled (RANS) turbulence levels are sufficient
 - Strong under-prediction of skin friction in severe cases even "grid-induced separation"

DDES shielding function

- The "Delayed-DES" (DDES) formulation of <u>Spalart et al. (2006)</u> introduced a shield function designed to protect the boundary layer from unwanted LES-mode incursion
 - A significant improvement, and DDES replaced the 1997 formulation as the new default

- However, as shown by <u>Menter (2016)</u>, the DDES shield function does not sufficiently protect the boundary layer on finer grids
- DDES shield collapses suddenly when grid spacing Δ_{max} is refined below about $0.3\cdot\delta_{BL}$
- An improved shielding function, giving impressive results, forms the basis of Menter's SBES approach
 - The formulation is unfortunately unpublished

Example: SAE notchback model

• SAE generic notchback vehicle model (<u>Cogotti, 1998</u>) with 20° backlight angle, $Re_L = 2.3 \times 10^6$

 σ -DDES

4th German OpenFOAM User Meeting (GOFUN)

- Experiments by <u>Wood et al., 2014</u>, studied in <u>1st Automotive CFD Prediction Workshop (2019)</u>
- Grey-area improved σ -DDES model exhibits spurious separation on rear backlight
- Analysis revealed shielding function collapse was to blame

Std. DDES

22.04.2020

- This was a (bad) surprise: σ -DDES shielding calibrated to give same performance as std. DDES (ZPG flat plate)
- IDDES also showed stronger shielding collapse to DDES (results of numerous other workshop participants)

Example: SAE notchback model

- SAE generic notchback vehicle model (<u>Cogotti, 1998</u>) with 20° backlight angle, $Re_L = 2.3 \times 10^6$
 - Experiments by <u>Wood et al., 2014</u>, studied in <u>1st Automotive CFD Prediction Workshop (2019)</u>
- Grey-area improved σ -DDES model exhibits spurious separation on rear backlight
- Analysis revealed shielding function collapse was to blame
 - This was a (bad) surprise: σ -DDES shielding calibrated to give same performance as std. DDES (ZPG flat plate)
 - IDDES also showed stronger shielding collapse to DDES (results of numerous other workshop participants)

Boundary layer profiles near end of roof

22.04.2020

4th German OpenFOAM User Meeting (GOFUN)

Improved shielding function of Weihing et al.

- Numerous researchers are working on improved shielding functions for DES and other nonzonal hybrid RANS-LES approaches
- We have implemented and tested an approach published by <u>Weihing et al. (2020)</u>:
 - BL edge velocity estimated locally using Bernoulli equation
 - Drawback: Not Galilean-invariant
 - A range of further functions, e.g. to rapidly destroy the shield when free shear layers and threedimensional turbulence are detected
 - These functions are combined in modular formulation
- Testing for a range of fundamental flows:
 - Shielding fully restored for for cases where std. DDES is known to fail
 - Sub-functions generally activate where they should, no major malfunctions
 - Drawback: Resolved turbulent regions covered in speckles of RANS-mode
 - Significantly increases dissipation
 - Degrades the grey-area performance of the $\sigma ext{-DDES}$ model

Shielding function activity & energy spectra for isotropic turbulence

σ -DDES+Weihing for SAE notchback

- SAE generic notchback vehicle model (<u>Cogotti, 1998</u>) with 20° backlight angle, $Re_L = 2.3 \times 10^6$
 - Experiments by <u>Wood et al., 2014</u>, studied in <u>1st Automotive CFD Prediction Workshop (2019)</u>
- Spurious separation on rear backlight removed by Weihing et al. shielding function
- Development of resolved turbulence in C-pillar vortices seems delayed

σ -DDES+Weihing for SAE notchback

- SAE generic notchback vehicle model (<u>Cogotti, 1998</u>) with 20° backlight angle, $Re_L = 2.3 \times 10^6$
 - Experiments by Wood et al., 2014, studied in 1st Automotive CFD Prediction Workshop (2019)
- Eddy viscosity on rear roof restored to near-RANS levels by Weihing et al. shielding function
- New shielding function successfully covers majority of boundary layer despite use with σ -DDES formulation

0.01

0.008

0.006

0.004

0.002

d_w (m)

Boundary layer profiles near end of roof

SA-RANS, DES com. grid

SA-DDES, DES com. grid

80

SA-o-DDES (Weihing), DES com. grid

60

4th German OpenFOAM User Meeting (GOFUN)

40

 v_t/v_0

Conclusions and outlook

- Use of DES continues to grow for complex applications, thanks in part to a range of enhancements to the approach, e.g.:
 - Significant robustness improvement with DDES (2006)
 - Extension to wall-modelled LES with IDDES (2008)
 - Grey-area improvements such as σ -DDES and Δ_{SLA} (ca. 2015)
- Boundary layer shielding remains a key unresolved* issue:
 - Mild grid refinement in the "wrong" place can cause spurious separation and severe degradation of results
 - Very dangerous for practical applications (very fine grids often needed to resolve complex geometry features locally)
 - * The SBES method of Menter appears to give excellent shielding, however the formulation is unpublished
- Weihing et al. shielding function tested in conjunction with σ -DDES in OpenFOAM
 - Good shielding performance
 - Two known drawbacks:
 - Not Galilean-invariant, hence not generally applicable (e.g. rotating wheels)
 - Increases model dissipation in LES-mode region and worsens Grey Area
- Although not perfect, the Weihing et al. approach seems a promising starting point for future developments to address these drawbacks

Thank you for your attention

