# silentdynamics

Automation of complex simulation-based design tasks using the example of a plate heat exchanger

Hannes Kröger Annes.kroeger@silentdynamics.de

**GOFUN 2021** 

Contents

silent**dynamics** 

Introduction | Metal Forming | Flow | GUI |

#### Introduction

silentdynamics GmbH Motivation InsightCAE

#### Step 1 - Sheet Metal Forming

Code\_Aster Features Meshing using Gmsh

#### Step 2 - Flow Analysis

**Multiregion Setup** 

|        | mat | ior |
|--------|-----|-----|
| $\sim$ |     |     |

mation: User Interface

silentdynamics GmbH

silentdynamics

Introduction | Metal Forming | Flow | GUI |

#### Dr.-Ing. Johann Turnow, CEO



since 2011 Rostock University Thermo-Fluid-Dynamics since 2015 silentdynamics GmbH

#### Fields of Business

#### Simulation Services



#### Fluid, Structure (CFD, FEM)

# Software Development Insight open source software

Dr.-Ing. Hannes Kröger, CEO

2009-2014 VOITH Turbo

2014-2020 Rostock University

since 2015 silentdynamics

Propeller Design

©Copyright silentdynamics GmbH GOFUN 2021 Plate Heat Exchangers

Introduction | Metal Forming | Flow | GUI

- Customers: Manufacturers of plate heat exchangers
   Complex heat exchangers in circular or rectangular shape in high pressure environment.
- Goal: simulation-based analysis
  - Structural (metal forming)
  - Heat transfer performance (pressure drop and heat transfer rates)
- $\Rightarrow$  Automated workflow for optimization



What is it about?

Introduction

Common practice: manual analysis workflow:

**Metal Forming** 

CAD Solving Meshing Postproc. Geometry Documentation PDF labour intensive

often complicated, error prone

InsightCAE: automated analysis workflow:



# silentdynamics

Report

InsightCAE

Introduction | Metal Forming | Flow | GUI |

What is the idea of "InsightCAE"?

conduct an analysis as much automated as possible



- input is a minimum set of required parameters, editable in a GUI
- implementation of a best-practice procedure
- focus on open source software, bundles also required additions to thirdparty software and
- interfaces.

deployment: simple installation of all components as installation packages

| Workbench                                                           |                                                        | sil                                       | ent <b>dynamics</b> |
|---------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|---------------------|
| Introduction   Metal F                                              | orming   Flow                                          | GUI                                       |                     |
| GUI for analysi                                                     | s configuration /                                      | execution / pre                           | view of results     |
| rti devoletti Idelo Essentetan Artieria Berulta Invia<br>Esentetari | InsightCAE Workbench - [Heat Exchanger Short Porming]] | - + ×                                     |                     |
| Moduling devices (                                                  | Currosci Disconseci                                    | di      renove after analysis is finished |                     |
| host nun Output                                                     |                                                        | Run<br>Syntad Assoc                       |                     |





duction | Metal Forming

Flow

GUI

silentdynamics

#### First Step - Sheet Metal Forming



#### Step 1 - Sheet Metal Forming

 proper plate geometry required for flow analysis

**Metal Forming** 

- ▶ generally not possible to design the plate geometry a priori
   ⇒ plate geometry depends on metal forming process
- vailable as input geometry



Metal Forming using Code\_Aster

silent**dynamics** 

Introduction | Metal Forming | Flow | GUI

Sheet metal forming simulation required

- in advance of flow simulation
- some properties:
  - plastic deformation, nonlinear problem
  - no symmetry can be exploited
  - very large contact surface
  - thickness of the sheet needs resolution
  - large problem expected,
    - long run time

 $\Rightarrow$  parallel execution needed

pen source tool wanted:



Plastic Deformation

#### Code\_Aster can handle

- nonlinear isotropic strain hardening ('VMIS\_ISOT\_TRAC') with a measured stress-strain curve as input
- or alternatively linear strain hardening ('VMIS\_ISOT\_LINE')
- with large strains ('SIMO\_MIEHE')

```
RESU = STAT_NON_LINE(...
CHAM_MATER = CHMA,
COMPORTEMENT = _F(
TOUT ='OUI',
RELATION ='VMIS_ISOT_TRAC',
DEFORMATION ='SIMO_MIEHE'),
...)
```

Contact

## silentdynamics

stamp (shell)

| ntroduction | Metal Formi |
|-------------|-------------|
|-------------|-------------|

to reduce mesh size

#### several formulations for contact available

|                | Perf  | Reliability | DOFs      | Robustness      |
|----------------|-------|-------------|-----------|-----------------|
| DISCRETE/      | +++   | +           | Hundreds  | ++              |
| 'CONTRAINTE'   | Schur |             |           | no_friction     |
| DISCRETE/      | +++   | +           | Limitless | +               |
| 'GCP'          |       |             |           | no_friction     |
| DISCRETE/      | +++   | +           | Thousands | ++              |
| 'PENALISATION' |       |             |           | with_friction   |
| 'CONTINUE'/    | ++    | ++          | Limitless | +++             |
| `STANDARD'/    |       |             |           | (with friction) |
| 'PENALISATION' |       |             |           |                 |
| 'CONTINUE'/    | +     | ++++        | Limitless | ++              |
| 'LAC'          |       | Suits for   |           | (without        |
|                |       | incompatib  |           | friction)       |

metal sheet

(3D solid)

Meshing

- surface mesh (shell) of stamp and die surface (triangles ok)
- volume mesh of (undeformed) sheet
  - prismatic (low height but large width)
    - $\Rightarrow$  prismatic extruded
  - automatic procedure
    - $\Rightarrow$  unstructured mesh of base surface
  - but quad-dominated
- selected tool: Gmsh



InsightCAE Extensions

Features added to InsightCAE

- Code\_Aster export file creator/solver launcher revised
- Output parser and progress reporter added (Special handling for parallel solver runs)
- Gmsh mesher interface has been extended
  - interface for prismatic meshes
  - improved interface to specify names for bottom/top/lateral boundaries
- a MED result file reader (VTK plugin) has been added to InsightCAE
  - (port of an older version of Salome's MED reader)



silentdynamics

Introduction

Metal Forming

Flow | GU

the final deformed sheet geometry may still be insufficiently resolved for CFD meshing





Step 2

Introduction

Metal Forming

Flow | GL

#### Second Step - Flow analysis



Flow Analysis

#### Requirements

- CHT simulation, periodic boundary condition (top to bottom)
- at least two channels (one hot fluid, one cold fluid)
- sealings between subsequent plates (no gap between sealing and plate!)
- handling of feed pipes (trimming on deformed plates!)
- meshing with trimmed mesher snappyHexMesh (handling of pronounced anisotropy / low channel height)
- optionally:
  - more than two channels with different plates in between
  - different fluid properties in separate channels

InsightCAE extensions

- multiregion support has been added to InsightCAE
  - possible to add fully configured OpenFOAM cases objects (including numerics, BCs, ...) as sub regions of a master case
  - added numerics setup for chtMultiRegion\*Foam
- support for multizone setups of snappyHexMesh have been improved
- not yet available in Case Builder will be added soon

boolean operations on triangular meshes: using CGAL library

#### User Interface



User Interface



End

Introduction

ow GUI

#### **Open for questions**

Dr.-Ing. Hannes Kröger Email: hannes.kroeger@silentdynamics.de Tel.: +49 381 36 77 98 53

https://github.com/hkroeger/insightcae https://silentdynamics.de/en/insightcae-documentation/

```
o add-apt-repository http://downloads.silentdynamics.de/ubuntu

$\$Udo apt-key adv --recv-key --keyserver keys.gnupg.net 79F5CBA4

$ sudo apt-get update

$ sudo apt-get install insightcae-base
```