

Latest Development in OpenFOAM and Industrial Applications

German OpenFoam User meetiNg (GOFUN)

Dr. Sebastien Vilfayeau 24/03/2021

Public

esi-group.com

Accuracy

Features

Content

- Development
 - Mesh
 - New hybrid layer input
 - high Aspect Ratio
 - Numerics
 - Improved Arbitrary Mesh Interface (AMI)
 - Post-processing
 - New dynamic mode decomposition (DMD) function object
 - sampledSurface: distanceSurface

DMD) function object
Usability
Accuracy

Robustness

- Industrial Applications
 - Visual-Environment for OpenFOAM
 - Reacting and non-reacting Flow
 - Hood Fluttering

Development

Mesh

New Hybrid Layer Input High Aspect Ratio

Development: Mesh Current mesh for Aerodynamics (low-Re Mesh)

- Open/Closed Grill
 - WLTP (Annexe 7): accuracy $\Delta(C_d A_f) \pm 0.015m^2$

drivAer Model (y+~30, 3 layers, 96% layer coverage)

https://blog.esi-group.com/driving-change-vehicle-emission-policies

Development: Mesh Towards high-Re Mesh

- Flow separation requires high-Re Mesh
 - Target
 - y+1
 - 20 layers
 - 100% layer coverage
 - complex CAD
 - Constraint
 - Mesh size
 - Mesh time + automated OpenFOAM® v2012

of layer

https://www.openfoam.com/contact/

Layer

generation

(layer by

layer)

ratio cells

Development: Mesh New hybrid layer input

• This release adds a new option to specify the near-wall layer using an absolute thickness, e.g. to obtain a desired y+ at the first wall layer, and a relative thickness for the final layer closest to the bulk to minimize mesh distortion.

model	firstLayer	finalLayer	overall	expansion
firstAndOverall	\checkmark		\checkmark	
firstAndExpansion	\checkmark			\checkmark
finalAndOverall		\checkmark	\checkmark	
finalAndExpansion		\checkmark		\checkmark
overallAndExpansion			\checkmark	\checkmark
firstAndRelativeFinal	\checkmark	\checkmark		

Development: Mesh Layer Coverage (high Aspect Ratio)

- The system/fvSchemes dictionary now has an optional geometry section which overrides the method to calculate the geometric properties:
 - Basic
 - This is the default scheme and provides the exact behaviour as previous versions. It calculates the mass centroid for faces and cells.
 - Stabilised
 - Face centres are calculated using only positive triangle contributions and is supposedly more stable on concave/distorted faces. This is the default in openfoam.org.
 - highAspectRatio
 - This scheme blends between basic and an edge-length weighted, face-area weighted average. This avoids truncation errors on high aspect ratio cells, at the cost of being lower order. The blending is linear across the range minAspect, maxAspect (see example above).
 - averageNeighbour
 - Similar to highAspectRatio but followed by a pass to align cell centres on top of one another to minimise non-orthogonality.

the original centroids are shown in green and the average neighbour ones in red

Development: Mesh

Layer Coverage (high Aspect Ratio)

Development

Numerics

Improved Arbitrary Mesh Interface (AMI)

Development: Numerics

Improved Arbitrary Mesh Interface (AMI)

- topological change capabilities to the cyclicAMI and cyclicACMI patches
 - enabling topology change where a 1-to-1 connectivity is established across the AMI leads to a much smoother pressure trace.

Development: Numerics

Improved Arbitrary Mesh Interface (AMI)

- topological change capabilities to the cyclicAMI and cyclicACMI patches
 - enabling topology change where a 1-to-1 connectivity is established across the AMI leads to a much smoother pressure trace.
- Constant/dynamicMeshDict

dynamicFvMesh dynamicMotionSolverFvMeshAMI;

Development: Numerics

Improved Arbitrary Mesh Interface (AMI)

	Method 1 (Old AMI)	Method 2 (New AMI)
Name	dynamicMotionSolverFvMesh	dynamicMotionSolverFvMeshAMI
Advantages	Efficient	Mass conservative
Disadvantages	Not conservative	Slower
Applications	Propeller, windturbine, rotating wheel	Turbomachinery, aeroacoustics (fan, etc)

Development

Post-Processing

New Dynamic Mode Decomposition (DMD) function object sampledSurface: cuttingPlane sampledSurface: distanceSurface

Dynamic mode decomposition (DMD) function object Motivation

Dynamic mode decomposition (DMD) function object Disclaimer: beta release – stay tuned for the upcoming versions

 The DMD method is introduced here as a function object called Streaming Total Dynamic Mode Decomposition (STDMD) based on an algorithm developed by <u>Kiewat (2019)</u>, <u>Hemati et al. (2017)</u>, and <u>Hemati et al. (2014)</u>

Copyright © ESI Group, 2021. All rights reserved.

Model Order Reduction

	High Fidelity Simulation	ESI Reduction Methodology	Standard Reduction Methodologies
Reduced Model Setup		PGD-based	POD-based
DOE sampling	-	Any	Strictly defined
Number of cases in DOE	-	~ #parameters	~ 2 ^{#parameters} / ~ #parameters ²
Reduced Model Ready			
Set-up time	Days/Weeks	Seconds	Seconds
Solution time	Hours/days	Seconds	Seconds
Computing costs	Very High	Very low	Very low
Typical Accuracy	Very High	High	Low
Possibility to Enrich	-	Yes	Costly
Integration with experimental data	No	Yes	No
Isolation components (puzzlePGD)	-	Yes	No

Sampling field values on surfaces

In OpenFOAM we have two options to create a sampled surface from an input surface:

Sampling field values on surfaces

In OpenFOAM we have two options to create a sampled surface from an input surface:

Industrial Applications

Visual-Environment

Reacting and non-reacting Flow Hood Fluttering

Visual-Environment

Visual-Environment: Reacting Flow Material Data Base

Extensive material database for Gas, Liquid, Solid is being supported

Material Database					Supported	
File Database				■ ? ×		
All 🗸	Name Air					
Search	Owner Name ESI					
`	Last Modified By ESI		lame Ethanol		· · · · · · · · · · · · · · · · · · ·	
2 8 🗉	Last Modified 2020-02-18		wner Name ESI			
Public Licor	Description critical values and ref density from	www.engineeringtoolbox.com	ast Modified By ESI			
Public User			ast Modified 2020-03-03		Name Aluminium	
🖼 🎫			scription critical values and ref density from v	www.engineeringtoolbox.com	Owner Name ESI	
🛱 🔁 Gas (17)	Material Data				Last Modified By ESI	
Air	Property	Value	·		Last Modified 2020-02-18	
Argon	₽ Density		terial Data		Description Reference: MatWeb: Materials Prope	rty Data (www.matweb.com)
CarbonDioxide(G)	Density Type	Constant 🗸	operty	Value		
CarbonMonoxide	Density (Kg/m^3)	Constant	∃ Density		Material Data	
Chlorine	B Viscosity	Perfect Gas Boussinesg	Density Type	Constant 🗸		(
	Viscosity Model	Incompressible Perfect Gas	Density (Kg/m ³)	791	Property	Value
Helium	Kinematic Viscosity -nu (m ² /s)	1.56906e-05	₽ Viscosity			Ormatant
Hydrogen	Specific Heat		- Wiscosity Model	Constant Kinematic 🗸	Density Type	Constant V
NitricOxide	Specific Heat Model	Constant 🗸	Kinematic Viscosity -nu (m^2/s)	1.589e-05	Density (Kg/m 3)	2698.9
	Specific Heat -Cp (J/K)	1007	E Specific Heat			Constant
Oxygen	Thermal Conductivity		Specific Heat Model	Constant	Specific Heat Model	
Ozone	Thermal Conductivity Type	Constant	Specific Heat-Cp (J/K)	1007		900
 Yenon 	Thermal Conductivity -k (W/m-K)	0.0263	Thermal Conductivity			Constant
🗄 🗁 Liquid (21)	Enthalpy Of Formation -Hf (J/kg)	0	Thermal Conductivity Type	Constant	Thermal Conductivity - k (W/m-K)	210
E Solid (8)	Entropy Of Formation -Sf (J/kg.K)	0	Thermal Conductivity -k (W/m-K)	0.0263	Molecular Weight (Kg/KMol)	26.98
	Turbulent Prandtl Number	0.85	Enthalpy Of Formation -Hf (//kg)	0.0203	Enthalpy Of Formation -Hf (J/kg)	0
			Entrany Of Formation Sf / //kg K)	0	Entropy Of Formation -Sf (J/kg K)	0
			Entropy Of Formation -ST (J/kg.K)	0		
			l urbulent Prandti Number	0.85		
			=			
		Reset Save Close				
			·			
				Keset Save Close		Parat Sava Class
						Reset Save Close

Visual-Environment: Reacting Material Database

- Material Database
 - Species and Mixture are also supported with material database
 - Extensive list of species are brought under material database.
 - Mixture category is introduced, which can be created by picking up multiple species and copying to newly created mixture.

Latest Development in OpenFOAM and Industrial Applications

B-B-Model Options 🕀 🗁 Multiphase

- C Scalar

----- Reactions

Adjoint Optimisation

Visual-Environment: Reacting Flow Chemistry Properties

- Once Chemistry is enabled, user will have option to pick up various ODE or Euler implicit chemistry solver.
- User can apply tabulation of dynamic adaptive chemistry (TDAC) method. TDAC have shown great potential of alleviating the huge computational cost while improving the chemistry fidelity for combustion problems

S Chemistry Properties	? ×
Selection	
Initiating Sets:	pecies
Enable Chemistry	
Initial Chemical Time Step	1e-07
Chemistry Solver	Euler Implicit
Chemistry Time Scale - cTauChem	1
Equilibrium Rate Limiter	
TDAC	
Reset	► OK Cancel

TDAC: An approach to include detailed mechanisms Public

Visual-Environment: Reacting Flow Combustion Properties

 Different combustion models have been supported, which can be picked based on type/nature of combustion and fuel & oxidizer conditions.

Combustion Properties			×
Active Combustion			
Combustion Model	EDM		~
Combustion Mode	EDM		*
Diffusivity Constant (Cd)	Diffusion		
Model Constant (CEDC)	PaSR		*

Visual-Environment: Hood Fluttering

Extracting the aerodynamic excitation

Visual-Environment: Hood Fluttering

Extracting the aerodynamic excitation

Vehicles in overtaking maneuver (static case):

- Same vehicle geometry as demonstrator.
- Different geometries (truck+vehicle, truck+motorbike, SUV+B-car) could be used

Visual-Environment: Hood Fluttering

Sensitivity to velocity and signal

Road Map

ESI is proud to lead the *exaFOAM* Consortium

H2020 EuroHPC JU project commencing 2021

- €5.4m project 2021-2023 awarded on July 2020
- OpenFOAM towards exascale computing
- Scope includes
 - Hardware utilization, including GPUs •
 - Evolutionary and Revolutionary algorithms •
 - Democratisation via HPC Grand Challenges •
- Let us know if you'd like to be involved as a
 - Stakeholder •
 - Observer •
 - Supporter

... an initiative by the HPC Technical Committee chaired by Ivan Spisso

- 3. PoliTecnico di Milano (Italy) 4
- University of Zagreb (Croatia) 5.
- Technische Universitaet Darmstadt (Germany)
- 7. Wikki (Germany)

2.

Open√FOAM

- Upstream CFD (Germany) 8.
- Universitaet Stuttgart, HLRS (Germany) 9.
- Barcelona Supercomputing Center, BSC (Spain) 10.
- National Technical University of Athens, NTUA (Greece) 11.
- 12. University of Minho (Portugal)

DARMSTAD

upstream

LRS

н

CFD

Upcoming Events

- Workshop: COVID-19, March 30th
 - Return to work imperative Minimizing the risk of airborne transmission
 - https://www.esi-group.com/company/events/2021/covid-19-workshop
- SIA Simulation Numérique digital, 7th April
- SAE World Congress Experience, 13th April 2021
- OpenFOAM 21 06 Release Webinar, July
- 9th OpenFOAM Conference, 19th -21st October
- NAFEMS World Congress, 25-29th October
- FKFS Conference, T.B.D

Any Questions?

https://www.openfoam.com/

svu@esi-group.com

Public

esi-group.com