HELY Open-source CFD for Enterprise

RAPID PEDESTRIAN WIND COMFORT ASSESSMENT

Thomas Schumacher, Salvatore M. Renda

engys

24.3.2021

About ENGYS

- > Global providers of CFD products and services
- > Founded in the UK (2009)
- > Main focus on leveraging open-source software
 - FOAM/OpenFOAM developers since 1999
 - ~20 software developers
- > Worldwide offices
 - UK, Germany, Italy, Greece, USA, Australia, RSA, Brazil
- > Well established resellers network
 - Japan, South Korea, China, USA, Germany, France, Spain

engys

OPENFOAM[®] and OpenCFD[®] are registered trade marks of OpenCFD Ltd.

What is HELYX?

- > CFD software suite
- > General purpose
- > Enterprise product
- > Highly scalable
- > Cost effective
- > Cloud ready
- > Multi-platform
- > Extendable
- > In production since 2010

"HELYX combines the best of two worlds: the proven capabilities, support and reliability of commercial tools with the inherent advantages of costeffective, scalable open-source software."

OUTLINE

- 1. Motivations
- 2. Block-Coupled Solver
- 3. Multi-Instance Solver
- 4. Wind Comfort Assessment
- 5. Conclusions

Motivations CFD in AEC (Architecture, Engineering, Construction)

> Pedestrian level wind

- > Wind driven rain
- > Wind loading
- > Outdoor thermal comfort
- > Pollutant dispersion
- > Indoor thermal comfort
- > Fire analysis
- > HVAC design

> ...

Motivations | Pedestrian Comfort

- High rise buildings increase winds at pedestrian level
- Impact on human activities to be assessed to grant planning permission
- Flow velocities (from CFD/WT) combined with climate data to evaluate pedestrian comfort at chest height
- In 2019, City of London and RWDI published standard methodology based on 36 wind directions analysis and modified Lawson Criteria*

* "Wind Microclimate Guidelines for Developments in City of London", City of London/RWDI 2019

Motivations | Pedestrian Comfort

- Analysis of different scenarios (with and without target, mitigation barriers) results in large number of runs/experiments
- Wind consultants develop their own workflow and methodology (bash/python scripting)
- Some cloud solutions offer "black-box" approach at expense of wind engineers expertise
- ENGYS mission is to provide streamlined, cost effective, open-source solutions to complex engineering problems
- > Our key ingredients:
 - Accelerate solution \rightarrow Block Coupled Solver
 - Simplify the process \rightarrow Multi-instance

OUTLINE

1. Motivations

- 2. Block-Coupled Solver
- 3. Multi-Instance Solver
- 4. Wind Comfort Assessment
- 5. Conclusions

Block-Coupled Solver

> Features

- New pressure-velocity block symbolic and solution infrastructure
- Algebraic Multi-Grid
- Steady/transient, dynamic mesh
- > Leverage existing code structures
- > fvOptions compatible (MRF, ERF, porosity etc)
 - Boundary conditions
 - Interfaces (AMI etc)
- > Backward compatible with segregated system and I/O
 - Enables rapid workflow transition
- > Speed-up
 - from 2 to 5 times faster than segregated

Case Study

Description

- > Flow around buildings in Niigata City*
- > Urban area with dense concentration of low-rise buildings
- > 60 m high rise building and two midrise 18 m buildings to be constructed
- Impact of new buildings on the surrounding wind environment
- > Wind data from local measurement station at $h_{ref} = 15.9 \text{ m}$

* "AIJ Benchmarks for Validation of CFD Simulations Applied to Pedestrian Wind Environment around Buildings", Architectural Institute of Japan 2016

Case Study

Description

- > Wind rose ightarrow 16 directions
- > Prevailing winds \rightarrow NNE and W
- > Measurements carried out in wind tunnel (scale model 1:250) \rightarrow 80 probes @ 2 m height

Case Study | Modelling

Mesh

- > Max. cell size ightarrow 22 m
- > Min. cell size ightarrow 0.085 m
- > No. near-wall layers ightarrow 3
- > Total mesh size ightarrow 26.5 M cells
- > Layers coverage ightarrow 99.5 %
- > Meshing Time ightarrow 0.22 hrs.
- > HPC Cluster → 4 Nodes 2 x 16
 Cores EPYC 7351 @ 2.4 GHz 4GB per core

Case Study | Modelling

Case Setup

> Incompressible steady-state RANS solution

- > Turbulence \rightarrow realizable k- ϵ model
- > helyx (simpleFoam) vs helyxCoupled
- > SIMPLEC settings for segregated solver

Ambient Sides

Case Study | Accuracy

Velocity Contours 2 m above the ground

Segregated and coupled solver solutions compare very well for the various wind directions

Case Study | Accuracy

Comparison of Wind Speed Ratios at Measurement Points

© Copyright 2021 ENGYS Limited. All rights reserved.

Case Study | Convergence

Summary

- > HPC Cluster \rightarrow 128 cores 4 Nodes 2 x 16 Cores EPYC 7351 @ 2.4 GHz 4GB memory per core
- > Objective convergence assessment
 - *a-posteriori* incremental trend analysis in trailing signal of aggregated data from the 80 velocity probes
 - the largest consistent averaging box from the end of the signal with no underlying trend
- > Total CPU Time for 16 wind directions
 - Segregated \rightarrow 4.12 hrs.
 - Coupled ightarrow 2.13 hrs.
- > Performances
 - Total speed-up ightarrow 1.93
 - Total saving on CPU time ightarrow 47.4 %

	Segregated		Coupled	
Direction	Iterations [-]	CPU [s]	Iterations [-]	CPU [s]
N	422	722	153	604
NNE	753	1327	159	627
NE	445	791	66	246
ENE	637	1140	81	343
E	735	1295	105	422
ESE	397	702	134	557
SE	736	1284	191	730
SSE	348	612	125	502
S	369	635	158	634
SSW	577	983	135	514
SW	471	811	98	415
WSW	477	837	126	496
W	599	1045	155	607
WNW	637	1110	105	438
NW	441	740	101	360
NNW	466	809	81	307
		14842		7800

Case Study | Convergence

Ave. Velocity Ratio vs Iteration

Averaged Velocity Ratio vs Iteration - NNE

Averaged Velocity Ratio vs Iteration - W

Averaged Velocity Ratio vs Iteration - S

Averaged Velocity Ratio vs Iteration - SSE

engys

Case Study | Convergence

Ave. Velocity Ratio vs CPU Time

Averaged Velocity Ratio vs CPU Time - NNE

Averaged Velocity Ratio vs CPU Time - W

Averaged Velocity Ratio vs CPU Time - S

engys

OUTLINE

- 1. Motivations
- 2. Block-Coupled Solver
- 3. Multi-Instance Solver
- 4. Wind Comfort Assessment
- 5. Conclusions

Multi-Instance Solver

Implementation

- > Uses multi-region structure to solve multiple design points (instances) sequentially in a single run
 - Single-mesh multi-region
 - Multiple-mesh multi-region

```
solutionSchedule
{
    instance1 {mesh1 (fluid1); mesh2 (solid1);} // helyxCHT example
    instance22 {mesh1 (fluid1); mesh2 (solid1); radMesh (fluidRad); radMesh (solidRad);}
    instanceMP {mesh1 (fluid1 fluid2 fluid3 fluid4);} // Adjoint Multipoint Example
    instance2 {mesh1 (region1);} // Single Mesh Multi Region
    instance3 {mesh1 (region2);} // .
    instance4 {mesh1 (region3);} // .
    instance5 {mesh1 (region4);} // .
```

> Multi-instance aware function object for automatic evaluation of pedestrian comfort

Multi-Instance Solver

Folders Structure

- > Single-mesh multi-region
 - Mesh \rightarrow constant/polyMesh
 - − Dictionaries → constant/dir*/ & system/dir*/
 - Fields → time/ & time/dir*
- > Multiple-mesh multi-region
 - − Mesh → constant/mesh*/polyMesh
 - Dictionaries → constant/mesh*/dir*/ & system/mesh*/dir*/
 - Fields → time/mesh* & time/mesh*/dir*

OUTLINE

- 1. Motivations
- 2. Block-Coupled Solver
- 3. Multi-Instance Solver
- 4. Wind Comfort Assessment
- 5. Conclusions

Wind Comfort Assessment

Methodology

Wind rose frequency Distribution (Weibull distribution)

Specific Exceedance probability map from Weibull and CFD for multiple wind directions

Exceedance Probability per velocity threshold and Comfort Levels

Category	Color	Wind Speed (5% exceedance)
Frequent sitting	1	2.5 m/s
Occasional sitting	2	4.0 m/s
Standing	3	6.0 m/s
Walking	4	8.0 m/s
Uncomfortable	5	>8.0 m/s

City of London Lawson LDDC Criteria "Wind Microclimate Guidelines for Developments in City of London", City of London/RWDI 2019

© Copyright 2021 ENGYS Limited. All rights reserved.

Wind Comfort Assessment

Function Object

> Calculate total probability of exceedance for each threshold U_{lim} in the criteria, using seasonal or annual parameters:

$$P(>U_{lim}, cell) = \sum_{\theta} p(\theta) \cdot exp\{-\left(\frac{U_{lim}}{R(cell, \theta)c(\theta)}\right)^{R(\theta)}\}$$

with:

– $\,\theta$ wind direction

-
$$p(\theta), c(\theta), k(\theta)$$
 Weibull parameters

- R(cell, θ) = $\frac{\overline{U} (cell) + \sigma \cdot \left(\frac{2}{3} tke(cell)\right)^{0.5}}{U_{ref}(\theta)} \cdot SF$ velocity ratio
- U_{ref} reference velocity and
- SF scaling factor
- > Assess comfort based on specific criteria and total probabilities of exceedance
- > Velocity thresholds and exceedances set by user. Different criteria such as Lawson, Davenport, NEN8100 and Safety Conditions can be defined
- > Volumetric fields generated for total probability of exceedance and comfort
- > Support in multi-instance solver

Tot. Prob. Exceed. 4m/s 0.0 25 50 75 100.0

Case Study | Pedestrian Comfort

NNW 20 NW 15 NW 15 NW 15 NE ENE E SSW SSE SSE

Total Probability of Exceedance

Case Study Pedestrian Comfort

4 3

Category	Color	Wind Speed (5% exceedance)
Frequent sitting	1	2.5 m/s
Occasional sitting	2	4.0 m/s
Standing	3	6.0 m/s
Walking	4	8.0 m/s
Uncomfortable	5	>8.0 m/s

City of London Lawson LDDC Criteria "Wind Microclimate Guidelines for Developments in City of London", City of London/RWDI 2019

WNW

WSW

FNE

ESE

OUTLINE

- 1. Motivations
- 2. Block-Coupled Solver
- 3. Multi-Instance Solver
- 4. Wind Comfort Assessment
- 5. Conclusions

Conclusions (1)

- The pressure-velocity block-coupled solver was shown to be 2x faster to reach convergence than the segregated solver, whilst the accuracy of the solution is preserved.
- > The coupled solver is still a new product, with large potential for performance improvement.

Conclusions (2)

- > The multi-instance solver is ideal for types of analysis taking advantage of an automatic workflow, e.g., DoE and similar.
- > It removes the need for external scripting (e.g., bash and python).
- > Combined with Runtime Post-processing, it enables automatic execution and reporting for wind comfort and safety studies.
- > It will be fully integrated inside the HELYX framework.

Thank you for your attention!

Get in contact

info@engys.com

Or follow us on LinkedIn youTube Twitter

Blog

