

Influence of bubble size distribution on acoustically cavitating flows

S. Lesnik, G. Brenner Institute of Applied Mechanics / TU Clausthal in cooperation with University Göttingen

German OpenFoam User meetiNg, Online, 24.03.2021

Acoustic cavitation

Source: Industrial Sonomechanics, LLC

Acoustic cavitation: multiscale problem

Source of figures: University of Göttingen, Drittes Physikalisches Institut

Motivation

- State of the art
 - fundamental physics of microscopic phenomena well understood
 - macroscopic computations: only linear bubble oscillations with homogeneous distribution
- Goals
 - relatively large geometries (~1-10dm³)
 - spatially inhomogeneous polydisperse bubble distribution
 - predict flow and bubble motion
 - current study: sensitivity to
 - void fraction
 - bubble population

Model

Source of figures: University of Göttingen, Drittes Physikalisches Institut

Bubble Motion

Radial bubble dynamics (RBD)

Time period $T = 50 \mu s$ (f = 20 kHz)

Source: University of Göttingen, Drittes Physikalisches Institut

- Toegel model: 3 ODEs
 - Keller-Miksis eqn. (*R* bubble radius)

$$\left(1 - \frac{\dot{R}}{c}\right)R\ddot{R} + \left(1 - \frac{\dot{R}}{3c}\right)\frac{3}{2}\dot{R}^2 = \frac{1}{\rho}\left[\left(1 + \frac{\dot{R}}{c}\right)\left(p_{\rm g} - |P_{\rm ac}|\sin(\omega t) - p_0\right) + \frac{R\dot{p}_{\rm g}}{c} - \frac{4\mu\dot{R}}{R} - \frac{2\sigma}{R}\right]$$

- energy transfer (θ temperature)
- mass (vapor) transfer (n amount of substance)
- Stiff system
- Solution as pre-processing step in python
- Usage in solver as interpolation 2D table $(f(R_0, P_{ac}))$

Helmholtz equation (HE)

- Wave equation in frequency domain
 - *P*_{ac} complex sound pressure amplitude
 - k_m complex wave number of the gas-liquid mixture
- Solution in foam-extend
 - block-coupled solver
 - direct linear solver (MUMPS)
 - Newton-Raphson method for coupling to non-linear bubble dynamics

$$k_m^2 = \int_T f(R, T, n, t, \dots) dt$$

$$\nabla^2 P_{\rm ac} + k_{\rm m}^2 P_{\rm ac} = 0$$

Bubble motion

- Lagrangian
- Force balance

$$m_{\rm b} \frac{\mathrm{d}U_{\rm b}}{\mathrm{d}t} = F_{\rm G} + F_{\rm Am} + F_{\rm D} + F_{\rm Bj}$$

- $m_{\rm b}$, $U_{\rm b}$ bubble mass and velocity
- Forces:
 - *F*_G gravitation
 - F_{Am} added mass
 - $F_{\rm D}$ drag
 - $F_{\rm Bj}$ Bjerknes, due to interaction of non-linear oscillation and acoustic pressure gradient $F_{\rm Bj} = \langle V_{\rm b} \rangle_T \nabla P_{\rm ac}$

Bubble populations

 Source: F. Reuter, S. Lesnik, K. Ayaz-Bustami, G. Brenner, R. Mettin, Bubble size measurements in different acoustic cavitation structures: Filaments, clusters, and the acoustically cavitated jet, Ultrason. Sonochem. 55 (2019) 383–394.

Bubble populations implementation

- Assumptions:
 - void fraction at walls is kept above a threshold (injection)
 - bubbles jet when touching walls (escape condition)
 - initial homogeneous void fraction
- Dynamic Load Balancing (foam-extend)
 - $\beta = 10^{-5} \Rightarrow 1$ to 100 Mio bubbles (β void fraction / bubble density)
 - due to cavitation forces bubbles may accumulate at stagnation points -> performance issues in parallel runs
 - rebalance mesh if imbalance is high such that every processor has similar number of bubbles

Overview

Geometry

- Sonotrode immersed in a cylindrical geometry
 - typical setup also for large scale reactors
 - axisymmetric
 - tank
 - 18cm tall
 - 24cm diameter
 - sonotrode
 - 3cm beneath water surface
 - 12cm diameter

Cylindrical tank

Veloctiy with glyphs

- Quasi-stationary after 3s
- Periodic fluctuations
- Velocity magnitude
 fits experimental results

1.3
1

$$0.8$$
 $\stackrel{\text{fe}}{=}$ 0.6 $\stackrel{\text{fe}}{=}$ $\stackrel{\text{fe}}{=}$ 0.2
 0

Time: 5.02 s

Acoustic pressure contours

- In the area of the cone structure |P| is fluctuating
- Bubbles are driven by \(\nabla P\)
- Thus, bubbles form clusters and disturb the flow, which leads to fluctuations

Fluid velocity

Void fraction

Reference R_0 Jet distribution

 R_0 Jet distribution

 $\beta = 1.2 \cdot 10^{-5}, \qquad \beta = 10^{-4}, \qquad \beta = 1.2 \cdot 10^{-5}, \qquad \beta = 1.2 \cdot 10^{-5},$ R_0 Cluster distribution $R_0 = 2\mu m$, monodisperse

Acoustic pressure

Reference $\beta = 1.2 \cdot 10^{-5}$, R_0 Jet distribution

$$\beta = 10^{-4}$$
,
 R_0 Jet distribution

 $\beta = 1.2 \cdot 10^{-5}, \qquad \beta = 1.2 \cdot 10^{-5}, \\ R_0$ Cluster distribution $R_0 = 2\mu m$, monodisperse

Summary

- Computation of cavitation flows in large scale reactors
 - solution agrees qualitatively with experiments
- Fluctuation of the flow, which is also seen in experiments, is explained by interaction between bubbles and acoustic pressure
- Bubble populations
 - generally: the flow and acoustic pressure structure show low sensitivity due to the population type
 - flow velocity may alter by up to 50%

Source code for Helmholtz solver (MUMPS interface): https://github.com/technoC0re

Questions?

Deutsche Forschungsgemeinschaft

Special thanks to WIKKI GmbH

Sergey Lesnik, Gunther Brenner