Influence of bubble size distribution on acoustically cavitating flows

S. Lesnik, G. Brenner
Institute of Applied Mechanics / TU Clausthal
in cooperation with University Göttingen

German OpenFoam User meetiNg, Online, 24.03.2021
Acoustic cavitation

Source: Industrial Sonomechanics, LLC
Acoustic cavitation: multiscale problem

Source of figures: University of Göttingen, Drittes Physikalisches Institut
Motivation

- **State of the art**
 - fundamental physics of microscopic phenomena well understood
 - macroscopic computations: only linear bubble oscillations with homogeneous distribution

- **Goals**
 - relatively large geometries (~1-10dm³)
 - spatially inhomogeneous polydisperse bubble distribution
 - predict flow and bubble motion
 - current study: sensitivity to
 - void fraction
 - bubble population
Model

Source of figures: University of Göttingen, Drittes Physikalisches Institut

Ultrasound: Helmholtz Eqn.

Bubble Motion

Model Coupling

Radial Bubble Dynamics
Radial bubble dynamics (RBD)

- Toegel model: 3 ODEs
 - Keller-Miksis eqn. (R – bubble radius)
 \[\left(1 - \frac{\dot{R}}{c}\right) R \ddot{R} + \left(1 - \frac{\dot{R}}{3c}\right) \frac{3}{2} \dot{R}^2 = \frac{1}{\rho} \left[\left(1 + \frac{\dot{R}}{c}\right) (p_g - |P_{ac}| \sin(\omega t) - p_0) + \frac{R \dot{p}_g}{c} - \frac{4 \mu \dot{R}}{R} - \frac{2 \sigma}{R} \right] \]
 - energy transfer (θ – temperature)
 - mass (vapor) transfer (n – amount of substance)
- Stiff system
- Solution as pre-processing step in python
- Usage in solver as interpolation 2D table ($f(R_0, P_{ac})$)

Time period
$T = 50 \mu$s
($f = 20$ kHz)

Source: University of Göttingen, Drittes Physikalisches Institut

Time period
$T = 50 \mu$s
($f = 20$ kHz)
Helmholtz equation (HE)

- Wave equation in frequency domain
 - P_{ac} - complex sound pressure amplitude
 - k_m - complex wave number of the gas-liquid mixture
- Solution in foam-extend
 - block-coupled solver
 - direct linear solver (MUMPS)
 - Newton-Raphson method for coupling to non-linear bubble dynamics

\[
\nabla^2 P_{ac} + k_m^2 P_{ac} = 0
\]

\[
k_m^2 = \int_T f(R, T, n, t, ...) dt
\]
Bubble motion

- Lagrangian
- Force balance

\[m_b \frac{dU_b}{dt} = F_G + F_{Am} + F_D + F_{Bj} \]

- \(m_b, U_b \) - bubble mass and velocity
- Forces:
 - \(F_G \) - gravitation
 - \(F_{Am} \) - added mass
 - \(F_D \) - drag
 - \(F_{Bj} \) - Bjerknes, due to interaction of non-linear oscillation and acoustic pressure gradient

\[F_{Bj} = \langle V_b \rangle_T \nabla P_{ac} \]
Bubble populations

Bubble populations implementation

- Assumptions:
 - void fraction at walls is kept above a threshold (injection)
 - bubbles jet when touching walls (escape condition)
 - initial homogeneous void fraction

- Dynamic Load Balancing (foam-extend)
 - $\beta = 10^{-5} \Rightarrow 1$ to 100 Mio bubbles (β – void fraction / bubble density)
 - due to cavitation forces bubbles may accumulate at stagnation points \Rightarrow performance issues in parallel runs
 - rebalance mesh if imbalance is high such that every processor has similar number of bubbles
Overview

OpenFOAM

- **RBD**
 - 1D Model
 - Python

- **Tabulated integrals**

- **Helmholtz eqn.**
 - Eulerian

- **Bubble Motion**
 - Lagrangian

- **Liquid Motion**
 - Eulerian
 - URANS

- **Interpolate** ∇P_{ac}

- **Momentum transfer**
Geometry

- Sonotrode immersed in a cylindrical geometry
 - typical setup also for large scale reactors
 - axisymmetric
 - tank
 - 18cm tall
 - 24cm diameter
- sonotrode
 - 3cm beneath water surface
 - 12cm diameter
Cylindrical tank
Velocitiy with glyphs

- Quasi-stationary after 3s
- Periodic fluctuations
- Velocity magnitude fits experimental results
Acoustic pressure contours

- In the area of the cone structure $|P|$ is fluctuating
- Bubbles are driven by ∇P
- Thus, bubbles form clusters and disturb the flow, which leads to fluctuations
Fluid velocity

Reference
\begin{align*}
\beta &= 1.2 \cdot 10^{-5}, \\
R_0 &= \text{Jet distribution}
\end{align*}

\begin{align*}
\beta &= 10^{-4}, \\
R_0 &= \text{Jet distribution}
\end{align*}

\begin{align*}
\beta &= 1.2 \cdot 10^{-5}, \\
R_0 &= \text{Cluster distribution}
\end{align*}

\begin{align*}
\beta &= 1.2 \cdot 10^{-5}, \\
R_0 &= 2\mu m, \text{ monodisperse}
\end{align*}
Void fraction

Reference

$\beta = 1.2 \cdot 10^{-5}$, R_0 Jet distribution

$\beta = 10^{-4}$, R_0 Jet distribution

$\beta = 1.2 \cdot 10^{-5}$, R_0 Cluster distribution

$\beta = 1.2 \cdot 10^{-5}$, $R_0 = 2\mu m$, monodisperse
Influence of bubble size distribution on acoustically cavitating flows

Reference

\[
\begin{align*}
\beta &= 1.2 \cdot 10^{-5}, \\
R_0 &\text{ Jet distribution} \\
\beta &= 10^{-4}, \\
R_0 &\text{ Jet distribution} \\
\beta &= 1.2 \cdot 10^{-5}, \\
R_0 &\text{ Cluster distribution} \\
\beta &= 1.2 \cdot 10^{-5}, \\
R_0 &= 2\mu m, \text{ monodisperse}
\end{align*}
\]
Summary

- Computation of cavitation flows in large scale reactors
 - solution agrees qualitatively with experiments
- Fluctuation of the flow, which is also seen in experiments, is explained by interaction between bubbles and acoustic pressure
- Bubble populations
 - generally: the flow and acoustic pressure structure show low sensitivity due to the population type
 - flow velocity may alter by up to 50%
Source code for Helmholtz solver (MUMPS interface):
https://github.com/technoC0re

Questions?

Special thanks to WIKKI GmbH